113 research outputs found

    Application of mineralogical, petrological and geochemical tools for evaluating the palaeohdrogeological evolution of the PADAMOT study sites

    Get PDF
    The role of Work Package (WP) 2 of the PADAMOT project – ‘Palaeohydrogeological Data Measurements’ - has been to study late-stage fracture mineral and water samples from groundwater systems in Spain, Sweden, United Kingdom and the Czech Republic, with the aim of understanding the recent palaeohydrogeological evolution of these groundwater systems. In particular, the project sought to develop and evaluate methods for obtaining information about past groundwater evolution during the Quaternary (about the last 2 million years) by examining how the late-stage mineralization might record mineralogical, petrographical and geochemical evidence of how the groundwater system may have responded to past geological and climatological changes. Fracture-flow groundwater systems at six European sites were studied: • Melechov Hill, in the Bohemian Massif of the Czech Republic: a shallow (0-100 m) dilute groundwater flow system within the near-surface weathering zone in fractured granitic rocks; • Cloud Hill, in the English Midlands: a (~100 m) shallow dilute groundwater flow system in fractured and dolomitized Carboniferous limestone; • Los Ratones, in southwest Spain: an intermediate depth (0-500 m) dilute groundwater flow system in fractured granitic rocks; • Laxemar, in southeast Sweden: a deep (0-1000 m) groundwater flow system in fractured granitic rocks. This is a complex groundwater system with potential recharge and flushing by glacial, marine, lacustrine and freshwater during the Quaternary; • Sellafield, northwest England: a deep (0-2000 m) groundwater flow system in fractured Ordovician low-grade metamorphosed volcaniclastic rocks and discontinuous Carboniferous Limestone, overlain by a Permo-Triassic sedimentary sequence with fracture and matrix porosity. This is a complex coastal groundwater system with deep hypersaline sedimentary basinal brines, and deep saline groundwaters in crystalline basement rocks, overlain by a shallow freshwater aquifer system. The site was glaciated several times during the Quaternary and may have been affected by recharge from glacial meltwater; • Dounreay, northeast Scotland: a deep (0-1400 m) groundwater flow system in fractured Precambrian crystalline basement overlain by fractured Devonian sedimentary rocks. This is within the coastal discharge area of a complex groundwater system, comprising deep saline groundwater hosted in crystalline basement, overlain by a fracture-controlled freshwater sedimentary aquifer system. Like Sellafield, this area experienced glaciation and may potentially record the impact of glacial meltwater recharge. In addition, a study has been made of two Quaternary sedimentary sequences in Andalusia in southeastern Spain to provide a basis of estimating the palaeoclimatic history of the region that could be used in any reconstruction of the palaeoclimatic history at the Los Ratones site: • The Cúllar-Baza lacustrine sequence records information about precipitation and palaeotemperature regimes, derived largely from the analysis of the stable isotope (δ18O and δ13C) signatures from biogenic calcite (ostracod shells). • The Padul Peat Bog sequence provided information on past vegetation cover and palaeogroundwater inputs based on the study of fossil pollen and biomarkers as proxies for past climate change. Following on from the earlier EC 4th Framework EQUIP project, the focus of the PADAMOT studies has been on calcite mineralization. Calcite has been identified as a late stage mineral, closely associated with hydraulically-conductive fractures in the present-day groundwater systems at the Äspö-Laxemar, Sellafield, Dounreay and Cloud Hill sites. At Los Ratones and Melechov sites late-stage mineralization is either absent or extremely scarce, and both the quantity and fine crystal size of any late-stage fracture mineralization relevant to Quaternary palaeohydrogeological investigations is difficult to work with. The results from the material investigated during the PADAMOT studies indicate that the fracture fillings at these sites are related to hydrothermal activity, and so do not have direct relevance as Quaternary indicators. Neoformed calcite has not been found at these two sites at the present depth of the investigations. Furthermore, the HCO3 - concentration in all the Los Ratones groundwaters is mainly controlled by complex carbonate dissolution. The carbonate mineral saturation indices do not indicate precipitation conditions, and this is consistent with the fact that neoformed calcite, ankerite or dolomite have not been observed petrographically

    Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence

    Full text link
    We provide a comprehensive report on scale-invariant fluctuations of growing interfaces in liquid-crystal turbulence, for which we recently found evidence that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1 dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here we investigate both circular and flat interfaces and report their statistics in detail. First we demonstrate that their fluctuations show not only the KPZ scaling exponents but beyond: they asymptotically share even the precise forms of the distribution function and the spatial correlation function in common with solvable models of the KPZ class, demonstrating also an intimate relation to random matrix theory. We then determine other statistical properties for which no exact theoretical predictions were made, in particular the temporal correlation function and the persistence probabilities. Experimental results on finite-time effects and extreme-value statistics are also presented. Throughout the paper, emphasis is put on how the universal statistical properties depend on the global geometry of the interfaces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful yet geometry-dependent universality of the KPZ class, which governs growing interfaces driven out of equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19 updated & minor changes in text (v3); final version (v4); J. Stat. Phys. Online First (2012

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Welcome to the House of Fun: Work Space and Social Identity

    Get PDF
    Following the diffusion of HRM as the dominant legitimating managerial ideology, some employers have started to see the built working environment as a component in managing organisational culture and employee commitment. A good example is where the work space is designed to support a range of officially encouraged ‘fun’ activities at work. Drawing on recent research literature and from media reports of contemporary developments, this paper explores the consequences of such developments for employees’ social identity formation and maintenance, with a particular focus on the office and customer service centre. Our analysis suggests that management’s attempts to determine what is deemed fun may not only be resented by workers because it intrudes on their existing private identities but also because it seeks to re-shape their values and expression

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness

    Get PDF
    A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy

    Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    Get PDF
    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements

    Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates

    Get PDF
    Background: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. Methods: Nonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. Results: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. Conclusions: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.)
    corecore