1,866 research outputs found

    Beyond averages: new approaches to understand heterogeneity and risk of technology success or failure in smallholder farming

    Get PDF
    Open Access ArticleIn recent years, many studies have demonstrated the heterogeneity of the smallholder production environment. Yet agronomic research for development (R4D) that aims to identify and test options for increasing productivity has not consistently adapted its approaches to such heterogeneous conditions. This paper describes the challenges facing research, highlighting the importance of variation in evaluating the performance of soil management recommendations, integrating aspects of production risk management within the formulation of recommendations, and proposing alternative approaches to implement agronomic R4D. Approaches are illustrated using two multi-locational on-farm paired trials, each having one no-input control treatment and a treatment with fertilizer application for maize in Western Kenya and for beans in Eastern Rwanda. The diversity of treatment responses should be embraced rather than avoided to gain a better understanding of current context and its relation with past management

    Crystallization of the ordered vortex phase in high temperature superconductors

    Full text link
    The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the ordered vortex lattice in high temperature superconductors after a sudden application of a magnetic field. Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for the creation of a propagating interface, and provides the time scale for this process.Comment: 8 pages and 3 figures; to be published in Phys. Rev. B (Rapid Communications section

    Trade-offs between biomass use and soil cover. The case of rice-based cropping systems in the lake Alaotra region of Madagascar

    Get PDF
    Farmers in the Lake Alaotra region of Madagascar are currently evaluating a range of conservation agriculture (CA) cropping systems. Most of the expected agroecological functions of CA (weed control, erosion control and water retention) are related to the degree of soil cover. Under farmers’ conditions, the grain and biomass productivity of these systems is highly variable and the biomass is used for several purposes. In this study, we measured biomass production of cover crops and crops in farmers’ fields. Further, we derived relationships to predict the soil cover that can be generated for a particular quantity of mulch. We used these relationships to explore the variability of soil cover that can be generated in farmers’ fields, and to estimate howmuch of the biomass can be removed for use as livestock feed, while retaining sufficient soil cover. Three different kinds of cropping systems were investigated in 91 farmers’ fields. The first two cropping sequences were on the hillsides: (i) maize + pulse (Vigna unguiculata or Dolichos lablab) in year 1, followed by upland rice in year 2; (ii) the second crop sequence included several years of Stylosanthes guianensis followed by upland rice; (iii) the third crop sequence was in lowland paddy fields: Vicia villosa or D. lablab, which was followed by rice within the same year and repeated every year. The biomass available prior to rice sowing varied from 3.6 t ha-1 with S. guianensis to 7.3 t ha-1 with V. villosa. The relationship between the mulch quantity (M) and soil cover (C) was measured using digital imaging and was well described by the following equation: C = 1 - exp(-Am × M), where Am is an area-to-mass ratio with R2 > 0.99 in all cases. The calculated average soil cover varied from 56 to 97% for maize + V. unguiculata and V. villosa, respectively. In order to maintain 90% soil cover at rice sowing, the average amount of biomass of V. villosa that could be removed was at least 3 t ha-1 for three quarters of the fields. This quantity was less for other annual or biennial cropping systems. On average the V. villosa aboveground biomass contained 236 kg N ha-1. The study showed that for the conditions of farmers of Malagasy, the production and conservation of biomass is not always sufficient to fulfil all the above-cited agroecological functions of mulch. Inventory of the soil cover capacity for different types of mulch may help farmers to decide how much biomass they can remove from the fiel

    Evaluation of Resource Management Options for Smallholder Farms Using an Integrated Modelling Approach

    Get PDF
    Farm-level analysis of trade-offs between soil fertility management alternatives is required to improve understanding of complex biophysical and socio-economic factors influencing decision making in smallholder farming systems and to identify opportunities for improving resource use efficiency. A farm characterization tool (IMPACT) linked to a generic optimization model (Household) was used to evaluate resource use on farms in contrasting wealth categories. The Household model optimized the net cash income for the farms (accounting for all on-farm and off-farm income, costs of production and expenditure for the households). Alternatives for management of nutrient resource were simulated using other models; APSIM for the crop production and RUMINANT for the livestock component. The output from the simulation models was fed into the Household model and evaluated within the biophysical and socioeconomic boundaries of the farms. Analysis of the performance of a poor farmer by IMPACT indicated a yearly net cash balance of US7perannum(afterallneedshadbeentakencareof),mainlyduetonegativereturnsfromthecroppingsystem.Thefarmerreliedondonatedfoodandfertilizers.Thecashbalancewasnegative,eventhoughshealsoworkedforotherfarmers(i.e.soldlabour,about10daysamonthduringsixmonthsofthecropgrowingseason)togenerateincome.ThenetincomeofthepoorfarmwouldbeincreasedtoUS -7 per annum (after all needs had been taken care of), mainly due to negative returns from the cropping system. The farmer relied on donated food and fertilizers. The cash balance was negative, even though she also worked for other farmers (i.e. sold labour, about 10 days a month during six months of the crop growing season) to generate income. The net income of the poor farm would be increased to US81 per annum and the N balance from 7 kg ha-1 yr-1 to 10 kg ha-1 yr-1 by expanding the area allocated to groundnut from the current 5% to 31%. This would, however, generate a huge demand in labour in the current year (extra 46-man days) and reduce the P balance from 0 to -1 kg ha-1 yr-1. Maize could be managed more efficiently on the poor farm by cultivating a smaller, well-managed area. A wealthy farm household with a maize dominated cropping system had a net cash balance of US210perannum,mainlyfromsaleofcropproducts.Undercurrentresourcemanagement,thenetcashbalancecouldbeincreasedtoUS210 per annum, mainly from sale of crop products. Under current resource management, the net cash balance could be increased to US290 per annum by optimization of household energy and protein consumption. The net cash balance for the wealthy farm would be further increased to US448perannum,andnutrientbalancesto271kgNha1and30kgPha1byexpandingthemanagementstrategywheremaizewasgrownwithacombinationofcattlemanureandammoniumnitratefertilizer.Todothis,thefarmerwouldneedtosourcemoremanure(orimprovecaptureandtheefficiencywithwhichnutrientsarecycledthroughmanure)andinvestin110mandaysextralabour.ExpansionoftheareagrowntogroundnutwithoutfertilizerinputstoathirdofthefarmwouldreducenetcashbalancebyUS448 per annum, and nutrient balances to 271 kg N ha-1 and 30 kg P ha-1 by expanding the management strategy where maize was grown with a combination of cattle manure and ammonium nitrate fertilizer. To do this, the farmer would need to source more manure (or improve capture and the efficiency with which nutrients are cycled through manure) and invest in 110 man-days extra labour. Expansion of the area grown to groundnut without fertilizer inputs to a third of the farm would reduce net cash balance by US11 compared with the current crop allocation due to poor groundnut yield. This would also increase labour demand by 155 mandays. Groundnut intensification on the wealthy farm would be more economic and labour effective if a small area was grown with basal fertilizer (7%N, 6%P, 8%K). Despite reducing nutrient balances for the arable plots, feeding groundnut residues to lactating cows increased net cash balance by 12-18% for the current year through increased milk production. The integrated modelling approach was useful for linking biophysical and socio-economic factors influencing decision making on smallholder farms and evaluating trade-offs for resource use in terms of nutrient balances, labour use, food sufficiency and cash balance.Farm Management, Resource /Energy Economics and Policy,

    Topological Expansion and Exponential Asymptotics in 1D Quantum Mechanics

    Get PDF
    Borel summable semiclassical expansions in 1D quantum mechanics are considered. These are the Borel summable expansions of fundamental solutions and of quantities constructed with their help. An expansion, called topological,is constructed for the corresponding Borel functions. Its main property is to order the singularity structure of the Borel plane in a hierarchical way by an increasing complexity of this structure starting from the analytic one. This allows us to study the Borel plane singularity structure in a systematic way. Examples of such structures are considered for linear, harmonic and anharmonic potentials. Together with the best approximation provided by the semiclassical series the exponentially small contribution completing the approximation are considered. A natural method of constructing such an exponential asymptotics relied on the Borel plane singularity structures provided by the topological expansion is developed. The method is used to form the semiclassical series including exponential contributions for the energy levels of the anharmonic oscillator.Comment: 46 pages, 22 EPS figure

    The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future.

    Get PDF
    Grain legumes play a key role in smallholder farming systems in sub-Saharan Africa (SSA), in relation to food and nutrition security and income generation. Moreover, because of their N2-fixation capacity, such legumes can also have a positive influence on soil fertility. Notwithstanding many decades of research on the agronomy of grain legumes, their N2-fixation capacity, and their contribution to overall system productivity, several issues remain to be resolved to realize fully the benefits of grain legumes. In this paper we highlight major lessons learnt and expose key knowledge gaps in relation to grain legumes and their contributions to farming system productivity. The symbiosis between legumes and rhizobia forms the basis for its benefits and biological N2-fixation (BNF) relies as much on the legume genotype as on the rhizobial strains. As such, breeding grain legumes for BNF deserves considerably more attention. Even promiscuous varieties usually respond to inoculation, and as African soils contain a huge pool of unexploited biodiversity with potential to contribute elite rhizobial strains, strain selection should go hand-in-hand with legume breeding for N2-fixation. Although inoculated strains can outcompete indigenous strains, our understanding of what constitutes a good competitor is rudimentary, as well as which factors affect the persistence of inoculated rhizobia, which in its turn determines whether a farmer needs to re-inoculate each and every season. Although it is commonly assumed that indigenous rhizobia are better adapted to local conditions than elite strains used in inoculants, there is little evidence that this is the case. The problems of delivering inoculants to smallholders through poorly-developed supply chains in Africa necessitates inoculants based on sterile carriers with long shelf life. Other factors critical for a well-functioning symbiosis are also central to the overall productivity of grain legumes. Good agronomic practices, including the use of phosphorus (P)-containing fertilizer, improve legume yields though responses to inputs are usually very variable. In some situations, a considerable proportion of soils show no response of legumes to applied inputs, often referred to as non-responsive soils. Understanding the causes underlying this phenomenon is limited and hinders the uptake of legume agronomy practices. Grain legumes also contribute to the productivity of farming systems, although such effects are commonly greater in rotational than in intercropping systems. While most cropping systems allow for the integration of legumes, intercropped legumes provide only marginal benefits to associated crops. Important rotational benefits have been shown for most grain legumes though those with the highest N accumulation and lowest N harvest index appear to demonstrate higher residual benefits. N balance estimates often results in contradictory observations, mostly caused by the lack of understanding of belowground contributions of legumes to the N balance. Lastly, the ultimate condition for increased uptake of grain legumes by smallholder farmers lies in the understanding of how legume technologies and management practices can be tailored to the enormous diversity of agroecologies, farming systems, and smallholder farms in SSA. In conclusion, while research on grain legumes has revealed a number of important insights that will guide realization of the full potential of such legumes to the sustainable intensification of smallholder farming systems in SSA, many research challenges remain to be addressed to realize the full potential of BNF in these systems.</p
    corecore