Borel summable semiclassical expansions in 1D quantum mechanics are
considered. These are the Borel summable expansions of fundamental solutions
and of quantities constructed with their help. An expansion, called
topological,is constructed for the corresponding Borel functions. Its main
property is to order the singularity structure of the Borel plane in a
hierarchical way by an increasing complexity of this structure starting from
the analytic one. This allows us to study the Borel plane singularity structure
in a systematic way. Examples of such structures are considered for linear,
harmonic and anharmonic potentials. Together with the best approximation
provided by the semiclassical series the exponentially small contribution
completing the approximation are considered. A natural method of constructing
such an exponential asymptotics relied on the Borel plane singularity
structures provided by the topological expansion is developed. The method is
used to form the semiclassical series including exponential contributions for
the energy levels of the anharmonic oscillator.Comment: 46 pages, 22 EPS figure