226 research outputs found

    Flemish Normative Data for the Buschke Selective Reminding Test

    Get PDF
    The purpose of this study was to provide normative data for a Flemish version of the Buschke Selective Reminding Test (SRT). The SRT allows for the simultaneous analysis of several components of verbal memory, such as short and long term retrieval. The Flemish SRT was administered to 3257 neurologically healthy adults (1627 men and 1630 women, age range = 18–94 years). Effects of age, sex and education on SRT performance were assessed. Results indicate that SRT performance decreased with age and that this decline accelerated in men compared to women. Furthermore, an effect of education was found favoring participants who completed a higher education. Normative data quantified through percentile ranks and stratified by age, sex and education level are provided

    Reversal of aging-induced increases in aortic stiffness by targeting cytoskeletal protein-protein interfaces

    Get PDF
    Background: The proximal aorta normally functions as a critical shock absorber that protects small downstream vessels from damage by pressure and flow pulsatility generated by the heart during systole. This shock absorber function is impaired with age because of aortic stiffening. Methods and Results: We examined the contribution of common genetic variation to aortic stiffness in humans by interrogating results from the AortaGen Consortium genome-wide association study of carotid-femoral pulse wave velocity. Common genetic variation in the N-WASP (WASL) locus is associated with carotid-femoral pulse wave velocity (rs600420, P=0.0051). Thus, we tested the hypothesis that decoy proteins designed to disrupt the interaction of cytoskeletal proteins such as N-WASP with its binding partners in the vascular smooth muscle cytoskeleton could decrease ex vivo stiffness of aortas from a mouse model of aging. A synthetic decoy peptide construct of N-WASP significantly reduced activated stiffness in ex vivo aortas of aged mice. Two other cytoskeletal constructs targeted to VASP and talin-vinculin interfaces similarly decreased aging-induced ex vivo active stiffness by on-target specific actions. Furthermore, packaging these decoy peptides into microbubbles enables the peptides to be ultrasound-targeted to the wall of the proximal aorta to attenuate ex vivo active stiffness. Conclusions: We conclude that decoy peptides targeted to vascular smooth muscle cytoskeletal protein-protein interfaces and microbubble packaged can decrease aortic stiffness ex vivo. Our results provide proof of concept at the ex vivo level that decoy peptides targeted to cytoskeletal protein-protein interfaces may lead to substantive dynamic modulation of aortic stiffness

    Transesophageal echocardiography, more than a diagnostic tool: use during surgical ligation of coronary artery fistulae - a case report

    Get PDF
    Coronary artery fistulae (CAF) are an infrequent coronary abnormality. Herein, we describe the use of intraoperative transesophageal echocardiography (TEE) in the treatment of CAF. A 61 year-old woman presented with chest pain and symptoms consistent with unstable angina. Subsequent coronary angiography revealed the presence of 2 CAF, one extending from the left anterior descending artery to the pulmonary artery (PA) and the other extending from the proximal right coronary artery to the PA. Surgical ligation of the CAF without coronary bypass was arranged. Intraoperative TEE was successfully employed to localize the CAF, monitor fistula blood flow and heart wall motion, and confirm successful ligation. The patient recovered without complications. This case highlights the utility of intraoperative TEE during ligation of CAF

    Normative equations for central augmentation index:Assessment of inter-population applicability and how it could be improved

    Get PDF
    Common reference values of arterial stiffness indices could be effective screening tool in detecting vascular phenotypes at risk. However, populations of the same ethnicity may differ in vascular phenotype due to different environmental pressure. We examined applicability of normative equations for central augmentation index (cAIx) derived from Danish population with low cardiovascular risk on the corresponding Croatian population from the Mediterranean area. Disagreement between measured and predicted cAIx was assessed by Bland-Altman analysis. Both, cAIx-age distribution and normative equation fitted on Croatian data were highly comparable to Danish low-risk sample. Contrarily, Bland-Altman analysis of cAIx disagreement revealed a curvilinear deviation from the line of full agreement indicating that the equations were not equally applicable across age ranges. Stratification of individual data into age decades eliminated curvilinearity in all but the 30–39 (men) and 40–49 (women) decades. In other decades, linear disagreement independent of age persisted indicating that cAIx determinants other than age were not envisaged/compensated for by proposed equations. Therefore, established normative equations are equally applicable to both Nordic and Mediterranean populations but are of limited use. If designed for narrower age ranges, the equations’ sensitivity in detecting vascular phenotypes at risk and applicability to different populations could be improved

    Rationale, design and methodology for Intraventricular Pressure Gradients Study: a novel approach for ventricular filling assessment in normal and falling hearts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraventricular pressure gradients have been described between the base and the apex of the left ventricle during early diastolic ventricular filling, as well as, their increase after systolic and diastolic function improvement. Although, systolic gradients have also been observed, data are lacking on their magnitude and modulation during cardiac dysfunction. Furthermore, we know that segmental dysfunction interferes with the normal sequence of regional contraction and might be expected to alter the physiological intraventricular pressure gradients. The study hypothesis is that systolic and diastolic gradients, a marker of normal left ventricular function, may be related to physiological asynchrony between basal and apical myocardial segments and they can be attenuated, lost entirely, or even reversed when ventricular filling/emptying is impaired by regional acute ischemia or severe aortic stenosis.</p> <p>Methods/Design</p> <p><it>Animal Studies: </it>Six rabbits will be completely instrumented to measuring apex to outflow-tract pressure gradient and apical and basal myocardial segments lengthening changes at basal, afterloaded and ischemic conditions. Afterload increase will be performed by abruptly narrowing or occluding the ascending aorta during the diastole and myocardial ischemia will be induced by left coronary artery ligation, after the first diagonal branch.</p> <p><it>Patient Studies: </it>Patients between 65-80 years old (n = 12), both genders, with severe aortic stenosis referred for aortic valve replacement will be selected as eligible subjects. A high-fidelity pressure-volume catheter will be positioned through the ascending aorta across the aortic valve to measure apical and outflow-tract pressure before and after aortic valve replacement with a bioprosthesis. Peak and average intraventricular pressure gradients will be recorded as apical minus outflow-tract pressure and calculated during all diastolic and systolic phases of cardiac cycle.</p> <p>Discussion</p> <p>We expect to validate the application of our method to obtain intraventricular pressure gradients in animals and patients and to promote a methodology to better understand the ventricular relaxation and filling and their correlation with systolic function.</p

    Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension

    Get PDF
    Although pulmonary hypertension (PH) selectively overloads the right ventricle (RV), neuroendocrine activation and intrinsic myocardial dysfunction have been described in the left ventricle (LV). In order to establish the timing of LV dysfunction development in PH and to clarify underlying molecular changes, Wistar rats were studied 4 and 6 weeks after subcutaneous injection of monocrotaline (MCT) 60 mg/kg (MCT-4, n = 11; MCT-6, n = 11) or vehicle (Ctrl-4, n = 11; Ctrl-6, n = 11). Acute single beat stepwise increases of systolic pressure were performed from baseline to isovolumetric (LVPiso). This hemodynamic stress was used to detect early changes in LV performance. Neurohumoral activation was evaluated by measuring angiotensin-converting enzyme (ACE) and endothelin-1 (ET-1) LV mRNA levels. Cardiomyocyte apoptosis was evaluated by TUNEL assay. Extracellular matrix composition was evaluated by tenascin-C mRNA levels and interstitial collagen content. Myosin heavy chain (MHC) composition of the LV was studied by protein quantification. MCT treatment increased RV pressures and RV/LV weight ratio, without changing LV end-diastolic pressures or dimensions. Baseline LV dysfunction were present only in MCT-6 rats. Afterload elevations prolonged tau and upward-shifted end-diastolic pressure dimension relations in MCT-4 and even more in MCT-6. MHC-isoform switch, ACE upregulation and cardiomyocyte apoptosis were present in both MCT groups. Rats with severe PH develop LV dysfunction associated with ET-1 and tenascin-C overexpression. Diastolic dysfunction, however, could be elicited at earlier stages in response to hemodynamic stress, when only LV molecular changes, such as MHC isoform switch, ACE upregulation, and myocardial apoptosis were present.Supported by Portuguese grants from FCT (POCI/SAU-FCF/60803/2004 and POCI/SAU-MMO/61547/2004) through Cardiovascular R&D Unit (FCT No. 51/94)
    corecore