1,941 research outputs found

    The VTRE Program: An overview

    Get PDF
    The Vented Tank Resupply Experiment (VTRE) Program is a NASA In-Space Technology Experiments Program (IN-STEP) that will develop, and fly a small, low cost space experiment to investigate, develop, and acquire needed data to extend and advance the technology of capillary vane fluid management devices to applications requiring direct venting of gas from tanks in low-gravity. GAS venting may be required for control of pressure, or to allow low-g fill of a tank with liquid while holding a constant tank back pressure by gas venting. Future space applications requiring these fluid management capabilities include both cryogenic and Earth storable fluid systems. The experiment is planned as a Shuttle Hitchhiker payload, and will be developed around two transparent tanks equipped with capillary vane devices between which a test liquid can be transferred. Experiments will be conducted for vented transfer, direct venting, stability of liquid positioning to accelerations within and significantly above the design values, and fluid reorientation by capillary wicking of liquid into the vane device following intentional liquid upset

    On-orbit cryogenic fluid transfer

    Get PDF
    A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed

    Revised reference model for nitric acid

    Get PDF
    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter

    Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    Get PDF
    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film

    Eg versus x relation from photoluminescence and electron microprobe investigations in p-type Hg1−xCdxTe (0.35 =< x =< 0.7)

    Get PDF
    Combined photoluminescence (at 10 T 300 K) and electron microprobe investigations have been carried out with HgCdTe samples grown from the melt or from solution. By exciting the samples through metallic masks with 200 μm diameter holes fixed with respect to the sample care was taken to pick-up both characteristic X-ray radiation as well as the photoluminescence from the same sample area. The Eg versus x relation determined in this way at T = 30 K has been compared with data from the interband absorption edge by other authors

    Limb radiance inversion radiometer

    Get PDF
    Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included

    Conjugacy theorems for loop reductive group schemes and Lie algebras

    Get PDF
    The conjugacy of split Cartan subalgebras in the finite dimensional simple case (Chevalley) and in the symmetrizable Kac-Moody case (Peterson-Kac) are fundamental results of the theory of Lie algebras. Among the Kac-Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras --extended affine Lie algebras-- that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson-Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildingsComment: Publi\'e dans Bulletin of Mathematical Sciences 4 (2014), 281-32
    • …
    corecore