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Foreword

The motions observed in the earth's atmosphere display spatial and
temporal scales which range from those for sound waves to those of the
large-scale standing planetary waves. The same may be expected to be true
of the atmospheres of other planets. To dete, considerable effort has
been expended on the largest scale circulations of other planets, but ap-
parently much less attention has been paid to smaller scale motions, such
as acoustic and internal-gravity waves.

In & preliminary step to the study of these phenomena in other
atmospheres, where additional physical processes may be important, the
present state of understanding of these waves in the earth's atmosphere
was reviewed. An invitation to present two lectures on "Atmospheric
Gravity Waves" to the NATO Advanced Study Institute on "Atmospheric Motions
and Turbulence Between 30-120 km" held at Lindau on Leke Constance, W. Ger-
many, September 19-30, 1966 was the occasion for writing down these sum-
maries of several aspects of the problem.

These reviews are thus a concise statement of our present under-
standing, end a starting point for considerations of similar phenomena
in the atmospheres of other planets.

These treatments are each self-contained, with separate pagination
and bibliographies. For the convenience of the reader, a colored sheet
has been inserted between them to facilitate opening to the second paper.

The preparation of these papers was primarily supported by NASA
Grant NSG-1T3, for which I am very grateful. Previously unpublished mate-
rial shown in the second paper resulted from studies supported by the
National Science Foundation under Grant NSF GP 2371 and Office of Naval
Research Contract Nonr 266(70).

I would like to thank Professor S. L. Hess for his encouragement
in this work, and Professor R. L. Pfeffer for interesting me in this
problem, unpublished material and physical insights.

John C. Gille
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1. Introduction

In lectures todey and tomorrow, we shall be speaking of the nature,
propagation and ducting of infrasonic waves in the terrestrial atmosphere,
Clearly, in two to three hours we cannot go into great mathematical detail.
We will, therefore, attempt to do three things:

1. To see the basic mathematics and physics upon which the results

are based;

2. To develop a physical feeling for the processes going on, and

3. To discuss qualitatively the results of numerical calculations,

so that we may understand their implicationms.

I hope that with this broad overview of an area of intriguing dbut
difficult problems, some of you will be sufficiently interested to turn to

the references and fill in the detsils which we must here omit.
2. The Perturbation Equations

To develop the basic equations, let us consider a fluid initially
at rest, and stratified in the vertical direction. We assume that the
wave amplitudes are small compared to the wavelength, so that the equations
of motion may be linearized. Also, we will neglect the effects of viscosity
and thermal transfer, whether conductive or radiative. Since we are looking
for length scales much less than the radius of the earth, and time scales
much less than a day, we will neglect curvature and rotation.

We introduce the following symbols:

X, ¥, 2 rectangular coordinates, z vertical

u, v, w velocities in directions x, y, %z, of perturbation order
po(z), Py basic and perturbation density

po(z), P, basiec and perturbation pressure

no(z), ny basic and perturbation entropy.

The basic equations are developed by Eliassen and Kleinschmidt (1957).
We have the equations of
1) Momentum

Dv +
Pox = - p + pg (Euler's equations)
which becomes with our assumptions
dp
2 = (Hydrostatic tion) (1)
& = - e Hydrosta equation



as the only zeroth order equation, and

op
u 1
Poat = " ax (2)
op
Po W s . %

2) Contimuity

which yields

u . 9wy _ .
ot tw 92 + p0 (ax + az) = 0; and (%)

3) Entropy conservation (adiabatic motion)

Dn .
pt = O
which becomes
an on
1 0 _

To this we add the equation of state

p = pRT (6)

where R = gas constant for air
T
The state of a pure fluid can be specified by any two of the four

temperature.

variables p, p, n and temperature T. Thus

9 )
i = ()00 + () an

New

2 P _
@B, F

where

(adiabatic) sound velocity

¢
Y = cp/cv
In the stratified equilibrium state,

dp
0 c 2 dpo dno

——— - _sp =
dz 0 O % *YhE: (7)

vhile for small perturbetion from this state



_ 2
Py = ¢ P *Ygm
and for adiasbatic motion
op 3p an
1 _ 2 1 1l
3% - %% % *Yhm (8)

We can get rid of the entropy terms by combining 5, T, and 8 to find

P 2% .2 g (9)
at 0 3t -89~ % 3z
The perturbation density can be removed with (4) to give
ap
1 _ 2 (du , dw
5t = Y8050 (5 * 5 (10)

Finally, taking 3/3t of 2 and 3, we can get rid of the perturbation
pressure, and are left with

2
3 u ow 9 2 ,/ou oW
Po 2 = " 8oax * 3 [fo ¢ UGx* az)] (11)
G T I LN (12)
°o 2 8Pg 3x ~ 3z |Po %0 ax T 3z

This derivation has followed that of Tolstoy (1936) (Appendix).
They are also derived in Lamb (1945), in Eckart (1960), and many other
places.

We shall look for solutions of the form

i(kx-~uwt)

U(z) e
) ei (kx—mt )

u

w = W(z
where k is the horizontal wave mumber
w is the angular frequency
t is the time
Let us also suppress the zero subscript of c and p which will be taken
hereafter to be the basic state.
On substitution in (11), we find

®w - g
U = ik (5pp (13)
k¢ ~-uw
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37 18 indicated by a prime, and from (12)

where

2 > e m2 dz

[7)] wa
—E—k -E-k/’
(o] c /

2 2 22
w"+a‘-12—1n——-9-——w'+ 25-1:2-5-3—‘1—1n e )-kg W=0 (1)
2

We may note immediately that for w large this reduces to the acous-
tic wave equation, while gravity effects enter in terms important for small

w.
Both coefficients depend on gradients of density and sound velocity.
The latter are most important for the high frequency range. We can get a
great deal of insight by assuming ¢ = constant.
Then

2

2 2
e & ' (9_ 2 .k 4 g _
W'+ 30 (in p) W' + {5 - kK + 5 |- 83 Inp - =5 W
kc w (o4

0 (15)

The term in square brackets has a particular explanation.
3. The Vaisalad Frequency

Consider a single element of fluid, contained within a flexible,
insulating membrane, and displaced vertically from its equilibrium posi-
tion. VWhen released, its motion will obey the equation

p—3% = -ghop (1)

where § is the vertical distance from equilibrium and Ap is the differ-
ence between internal and external density. 4p = Ap (internal) -Ap (emvi-
ropment) where Ap {enviromment) is the change of density experienced simply
because of motion in a stratified fluid. For an incompressible fluid we

would have Ap = - Ap (environment) = - %%-. (2)

Ap {internal) is due to the compressibility of the fluid within

the membrane. Since the pressure is the same inside and out,

dpo
Ap (internal) = ¢ P (3)



which, by virtue of 2.2 and 2.5 may be written
e? 8p (internel) = _ gp g (%)
Combining (1), (2), and (k)

2 2
St l_, 4 .8 =
31;2 + [ 4 az inp c2 14 0 (5)

When the term in brackets is greater than zero*, simple harmonic
motion will result, with

W -g[ag-z-lnp+f2—] (6)

as the angular frequency. This is the Veisald frequency, sometimes

called the Brunt frequency. Clearly, it must be relevant for gravity
waves,

L. Waves in an Infinite, Isothermal Atmosphere.

An equation of the form of 2.15 may be transformed in a standard
manner [see Tolstoy (1963), Sect. 4] which in this case is

W o= 0'1/2 h (1)
to reduce 2.15 to the form
h"+n’h = 0 (2)
where
2 2 : 2
2 _ w 2 .k 2 1/4 2 1 4
n® = -k 455N - ﬂ'(dz in é) s—gzlno (3)
C w dz

is seen to be a vertical wave number.
We shall sometimes find it convenient tc meke the additional

assumption (equivalent to an isothermal atmosphere) that
p = 0g /M o BvE (&)

where o is the density at the origin of z, H is the scale height,

H = — = -

2
#Stability against convective overturnings requires N~ > O.



and v is a wave number characteristic of the stratification

i .
2H T .2

v =

With these approximations, (3) becomes

2
n2 = 95-- k2 +
c

|w

ol
M)
n

N - (5)

€

These assumptions are rather unrealistic, since N and v vary
considerably in the atmosphere. However, consideration of this model
will provide us with physical insight which will be helpful in con-
sidering more realistic situations.

There are three separate effects in the equation for n2:

(1) Compressibility, which enters in terms wz/c2 and g2/c2.
Incompressibility corresponds to ¢ = o,
(2) stratification: o
é%-ln P, —QE iIn p. These terms vanish in homo-
geneous atmospheres. dz

(3) Gravity. This enters only in the definition of N°.
Let us start with a simple case, and add complexity.

k.1 Incompressible, homogeneous case. (¢ = =, v = 0, g # 0)

F 3
Equation (5) becomes n°=-k° Thus h e e BZ  an exponential.

No real propagating wave system exists without boundaries. These are

the gravity waves at an air-water interface, for example.

4.2 Compressible, homogeneous case, without gravity. (c # », v =0, g = 0)

2
e (6)
c

= Y o 2 . constant, (7)

wave propagation is isotropic and non-dispersive.



T
k.3 Density stratified, compressible fluids, with g = 0. (c # », v # 0)

In our isothermal atmosphere with constant scale height, (5)

becomes 2

2 2 _ w_
k  +n = 5=V

c

2

or
wz = 2 (k2 + 02+ v2)
Because of the symmetry between k and n, propagation is again
isotropic, but note that for w2 < v2 c2 unattenuated propagetion is
not possible. This frequency

wy = ve = Berglf? (9)

forms a low frequency cut off to these waves. Since they approach the

acoustic equation at high frequencies

k2 + n2 s> v2

these are acoustic type waves.
This cut off Wo

characteristic of a distributed mass - spring system.

is a resonant frequency for propagating waves,

We mey graph this result in the w - K plane as shown in Figure
1 (after Tolstoy, 1963). (Plotting w vs k would be similar.) Note
that the slope of a line from the origin to a point on the curve is

V = w/K, the phase velocity, and is given by V = w/K = ¢ (1 - mglwe)_llz.

Since the slope changes for different w, the propagation is dispersive.

Of greater interest than the phase velocity is the group velocity

L2 12
u(k) = %‘% = ¢ (1 - g)

w

the velocity with which the energy is propagated. It is, of course,
the slope of the w-K curve. As w > Wy» V=obdut U=+ 0.
The cut-off frequency vy mey easily be calculated using

c = 3.3 - 10h cm/sec,

H = 8- 10° cm, to be

wy = .02 sec_l, corresponding to
_oom :
P0 = oo = 5 minutes.

0
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Fig. 1. Dispersion of acoustic waves in an infinite medium
‘with density stratification. (After Tolstoy, 1963)

A TN
ARIULNW NN

Fig. 2. Dispersion of plane internal waves in an infinite,
incompressible fluid due to density stratification.
(After Tolstoy, 1963)



Thus, "sound" waves of period > 5 minutes will not propagate.

L.} Stratified, incompressible case with gravity. (¢ =, v # 0, g # 0)

Again, using (b4), (5) becomes

2
n2 = k2 l#é.- ] - v2
w

kN

T (k2‘+ n + v2)1/2 (10}

or

where

N = 2.8 (11)

We note immediately that we must have N2 > w2, i.e., N is a high

frequency cut-off for propagating waves. Also, since k and n are no
longer symmetric in the equations, propagation is anisotropic, as well
as dispersive.

Graphing as before in Figure 2 (after Tolstoy, 1963) we see the
cut-off and also that the largest group and phase velocities occur near
w=0while V, U+ 0 as w + N.

4.5 Compressible stratified fluid with gravity. (c # =, v # 0, g # 0)

Equation (5) becomes

2 2

n2 - Q__kz.'.kz.li—_vz (12)
2 2
c W

where 2
2
N = 2vg - 55' (13)
(4

(For the values used previously, this leads to a period of about 7 minutes.)
Equation (12) may be written with the aid of (8) and (10),

L

w 2 2 _
S -w tue, =0
w

a

Acoustic and internal type solutions are both present, and may

be written

2
2 2 Yy
Wy, = u, 1-( a) .
2 wy 2 (u)
wI = wi [l + (‘w—') + .



The effect of gravity on acoustic waves and of compressibility

on internal waves is of order

pemlr—-?m

which Tolstoy (1963), shows to be only .2 at its maximum. To compare
these solutions, we must first compare

wp = L& emd ¥ = (7—1)1’2%-
Since vy ~ 1.4 in the atmosphere, wy > N. The results are shown in Fig. 3
(after Tolstoy, 1963). We see that the effect of the gravity on the
acoustic waves or compressibility on the internal gravity waves is to
move the solutions slightly toward each other. Again propagation is
anisotropic and dispersive. We have therefore 3 regions separated by
curves of n2 = 0, which delimit the acoustic type solutions, the in-
ternal gravity type solutions, and the region between where no propa-
gating body waves exist in an infinite medium. The line marked Lemb

type waves in the region n2 < 0 will bve discussed later.

4.6 Fluid Motions in Acoustic Gravity Waves.

Having explored the dispersion diagram, let us consider the nature
of the fluid motions. We saw from 4.2 that for a propagating wave we
have the quantity h given by a sinusoidal function of altitude. However,
from 4.1, it is clear that

- - v
0 1/2 n o= p 1/2 V%

W = 0 h (15)

is an exponentially growing function of altitude. This does not lead to

kinetic energy divergence, since

- 2 _ 1
KEv-l/2pW = 30

-2vz ~1/2 vz
e p e

2
0 ( 0 )

2
h
h -2—' (16)

which is bounded.
Now W' = (in + v) W (17)
and 2.13 becomes

< kn+ ik c2 (v - g) W (18)

U =
kzcz-m2




EVANESCENT
WAVES

n2<o
—7= = /77INTERNAL
/ GRAVITY WAVES
2
/n/>/o/

Fig. 3. Regions of solutions for a compressible, stratified
fluid in a gravity field. Dashed curves correspond

to neglect of gravity (w,) and compressibility (w;).

(After Tolstoy, 1963)

ACOUSTIC w INTERNAL GRAVITY
MOOE DECREASING MODE
— w>>uw, wsN I

- 0
O % O
¢ >
!

w T ey w << N ¢—>

Fig. b. Particle orbits for a horizontally propagating wave
for the two families of solutions. The horizontal
orbit size is much less than a wavelength.
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Again, the horizontal kinetic energy density is obviously bounded.

We cen derive the particle orbits from (18) without difficulty.

Acoustic Wave Orbits.

As noted above, gravity does not greatly affect the acoustic
branch. For simplicity we shall set g = 0. Then, with (18) and
introducing

u = 3 = iowtE

at
(19)
= 9%
w 5% iwtg
k -
E = —_iE___EXI 4 (20)
2 2
n° + v
Putting
r = cosut; £ = kv sin wt + ———59——-cos wt (21)
2 2 2 2
n +v n +v
and the particle orbit is given by
2 2 2
2 k 2 2 k k
RS Ayl (22)
n°~ + v n + v (n® + V%)
the equation of an ellipse with tilted axes (for n% + v > 0).
For high frequencies, nZ >> v2, (22) reduces to
£ -k
. = (23)

indicating linear motion in the direction of propagation, as with
standard acoustic waves. In the particular case of a horizontally
propagating wave (n = 0), (22) becomes

2 2
2 kW 2 k (24)

£+ ;E'C = ;5 >
indicating displacement transverse to the direction of propagation,
tending toward being completely transverse as k + «», It is easy to
demonstrate that the vorticity = %%-— %%-is not zero. Only in fluids
of uniform density are sound waves purely longitudinal and irrotational.
From (21) it can be seen that the particle traces its orbit in a clock-

wise direction.
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Gravity Waves.
We may start with 2.13, set ¢ = », and make use of (19) to find

n+iv

E = -~ X 4 (25)
and again if
t = cos wt
E = - §~sin wt - % cos wt
then 2, (Ei Jesle ) !E_ (26)
"wa' k*F T 2

which is also the equation of a tilted ellipse for w < N.
Again looking only at horizontal propagation, for w ~N,
2, 2 /2
k = —E--éy—-—- -+ o g >0 (27)
N /™ - 1
and the motion is transverse. As w + 0

tg+0 (28)

£ + v/k, and the motion is again longitudinal. This behavior
and the intermediate steps are summarized in Fig. 4. From (26) the
trajectory is executed in a counterclockwise direction -~ opposite to
acoustic waves.
Midgley and Liemohn (1966) have given a very interesting dis-

cussion of particle orbits and propagation.

4.7 Polarization Relationships.

Taking the form from 1, we can write

p s -
Wiz = U/X 1 _ 1 o~1/2 1(kx + nz wt)

"
|
R
e

(20)

« A &% ei(kx + nz - wt)

where A is a constant, presumed small.

Substitution in equations 2.1, 2.4, and 2.13 leads to the follow-

ing polarization relations:
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w(w? - k° ¢2)

N
]

X = wkeco [n+1 g/c2 (1 -+v/2)]

(30)
Yw2 [n+1g/? (1 - v/2)]

o)
n

2]
i

2 2 R w2
- -1ik“gly-1)+1i 15—5
2¢

These relationships may be thought of as representing vectors on
a complex diagram, showing the relative amplitudes and phases of the
different oscillating components.

Note that these relationships indicate the percentage perturbation
of pressure and density increases with height. A height will be reached
where our perturbation treatment will not be applicable, and non-linear
effects must be considered.

At very low frequencies, we have

1/2

rx o 10y - 1) (31)

which relates density perturbations to horizontal velocities.

We can crudely think of the motions in the following qualitative
ways. For the acoustic waves, fluid comes together, is compressed, and
sinks into a denser region before the compressed fluid elastically ex-
pands and is buoyed up on the second half of the cycle.

For gravity waves, fluid comes together too slowly to be greatly
compressed. It sinks, is compressionally heated; its density becomes
lower than its surroundings and it is buoyed back up, causing the fluid
flow direction to reverse.

Midgley and Liemohn (1966) have discussed the physical details

much more carefully.

5. Phase and Group Velocities; Propagation Surfaces and Energy Flow

The information of Section 4.5 can be seen in another way. By
picking an w, as a period (= gl), for a series of k we may solve for n.
The points k, n for a given w‘:re plotted in Figure 5, taken from Hines
(1960). Such surfaces are known as propagetion surfaces, and are dis-
cussed also by Tolstoy (1963) and Eckart (1960). The family of ellipses
represents a sequence of acoustic waves, while the hyporbolas represent

internal gravity waves.




n (m-l)

—
- 3.1074
- 2.10°4
= 1.10-4
-1
LUN) T T k (m )
4 1104 21074 31074
3
5.5 2
i 1
22
Fig. 5. Propegation surfaces of acoustic gravity waves. The

periods in minutes are shown in boxes on the corres-
ponding curves. The cut off periods for acoustic and
gravity waves are 4.4 and 4.9 minutes respectively.
(After Hines, 1960)
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An interesting point can also be noted here. Looking at the hyper-
bola for a particular period, we see that the ratio k/n is nearly
constant over all but a small part of the curve. For waves of that period,
with horizontal wavelengths somewhat less than the maximum, the wave can
only propagate in one direction; alternatively, the frequency depends only
on the direction of propagation. This point is also noted by Landau and
Lifshitz (1959, pp. 4u-46). The longer periods propagate closer to the
vertical, but note that these waves cannot propagate vertically. For long
period gravity waves, then, we have a family of wave fronts tilted slightly
from the horizontal, moving upward or downward.

Remembering that Vx = %} Vz = 9; we can form a refractive index vector

no=Sk o o_cn ?
X w 2 w

This is plotted in the next figure (6) (after Hines, 1960). Here
the distance from the origin gives the index of refraction - waves with
period less than 1 minute are seen to propagate isotropically with the
speed of sound, while smaller n values represent more rapid propagation.
Note that acoustic wave phase may propagate much more rapidly near wg than
in the high frequency limit, and more rapidly vertically. Internal gravity
wave phase propagates more slowly than sound, and more rapidly horizontally.

The group velocity may be written

dw - ouw
Uy = %> U, = o
and is known from general considerations to be the velocity of energy pro-

pagation. Since the lines in the last figure are lines of constant w, we

see that U is perpendicular to these lines and directed toward shorter
periods. This is illustrated in the inset, where it is clear that the
vertical direction of energy propagation may be opposite to the direction
of phase propagation. Specifically, a downward phasc propegation may
accompany upward energy propagation, although for longer periods the flow
is nearly horizontal. See also Eckart (1960).

6. Boundary Conditions and Boundary Waves
At a rigid horizontal surface, the normal velocity must vanish, or
W =0 (1)

At the surface between two compressible fluids (labeled 1 and 2)

of different densities, we require



Fig. 6. Contours of constant period in the Ng» Ny domain. The

periods (in minutes) are shown in boxes on the corres-
pondine curves. The hasic parameters are as for Fig.
5. The relation between phase and energy proesression

is indicated by the geometric construction in the inset.
(After Hines, 1960)
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W, = W (2)

and

P, = b, (3)

However, since the surface separating the fluids also moves, we must

express this as

et = P2 ()
Dt Dt
Since
D 2 D 2 -+
Bt C e = -ceV v (5)

condition (5) may be written (for our 2-dimensional case)

N
1 *1

2

[ixuyu 5

+ wl'] = ¢, o, [i kU, + w2'] (6)

1l 2
For the case of a free surface, p, = 0, and (6) beccmes

ikU +W' =0 P

In general, remembering

2
_ .. C W' -gW
ke -y
we have
2 2 2 2
2 2 2 2 cp (K ey - )
1 -— - '
Py (x" g Wi - w Wi ) Po (x° g W2 w W2 ) 2,2 2 2 (8)
c (x° ¢ - w)
1 2
Boundary Waves

The presence of boundaries allows additional wave types to those
discussed above. Boundary waves are waves whose energy is concentrated

at a boundary of discontinuity of one or more parameters (c, p, p') and

correspond to n2 < 0 on both sides of the boundary - i.e., an exponential

variation of amplitude. On physical grounds, we demand that these waves
give a vanishing of energy density as z =+ =.
Tolstoy (1963) discusses these waves for several situations. We

will mention only two which are of particular interest.
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The first of these is the Lamb wave (Lamb, 1945, p. 548). Here
we satisfy B. C. (1) by setting W = O everywhere. Then, from 2.12,

ikng+5§;(pc21KU)=0 (9)
f% (p c2U) + g%—(p 2u) = o (10)
2
pcfU = (pfU) g e€/eE z > 0 (11)
or o
U = U, o(2v - 8/e7)z z >0 (12)

it c2 = constant.

| Stability of the medium requires 2v > g/c2, so the amplitude

increases with height. However,

2 2
0 U2 « e—2vz e2(2v—g/c )z - e2(v-g/c )z

(13)
which does go to zero.

Another wave in a stratified compressible fluid, at a free

surface of medium 2, z < 0, is found from (8), with Py = 0.

2 2 ., _
kg Wy ~w Wy = 0 (14)

We are looking for solutions of the form
-v.2 n.'z
V2

2
W, e e (15)

Then we have ag a dispersion relation

2
¥ o
8 =y, +m, (16)
w
where
1/2
2 2
2 w k 2 2
- n' = in. = (kKK - 5-=—F3H8 +v (17)
2 2 c2 w2 2
is real.

This has surface waves, and also, substituting

w = ke (18)
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into (17) one finds
ny' = (f%-- v,) (19)

Putting (19) and (18) into (16) proves that (18) is a solution. By
(15), we have

Wy = e(g/cz)z z <0
This represents a horizontally traveling sound wave, with a small
vertical component arising from buoyancy effects in the gravity field.
The condition for energy density -+ 0 as z + -=» is the same as for the
Lemb wave. These we may term Lamb-type waves.

We can make the following remarks about the Lemb waves and
Lamb-type waves. First, they are not true boundary waves, but modified
scoustic waves, traveling parallel to the density stratification. Second,
they need the presence of a boundary, to prevent the local energy density
from becoming infinite in one direction.

The position of these waves has previously been indicated on the

diagnostic diagram.

T. Reflection and Transmission Coefficients.

T.1 Some general remarks.

The standard procedure for obtaining reflection and transmission
coefficients at an interface between layers with constant coefficients
is to consider a wave of unit amplitude incident on & boundary, which
is partly reflected (with amplitude R) and partly transmitted with
amplitude T. The boundary conditions are invoked to solve for R and T.
If the incident wave is in medium, 1, these are respectively

ei(kx+nlz—mt)
5 ei(kx-nlz—mt)

(kx+n
T ei

2z-wt)
It is interesting to note that this only specifies the w, k of
the transmitted wave. If the two media are somewhat different, so that

the w(k) acoustic curves of the first medium intersect the internal wave
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solutions of the second medium, we have sufficient conditions to allow
transformation of an acoustic wave to an internal wave. As we saw before,

this will be possible if c, > ¢y An obvious condition is that

It is also necessary that the slope of the internal wave solution
for 2 near w = 0 exceed ey These are not sufficient, since they do not

require the intersection of wy and w, curves.

7.2 Calculation of the Reflection Coefficient.

We will illustrate the technique by considering discontinuities
in density gradient in the presence of a gravity field. We have two

half spaces in contact at z = 0.

-2vlz
In half space 1, z < 0 P = Py €
—2v2z
while in half space 2, z > 0 Py = Py €
while ¢ = S
i(kx+n,z-wt) i(kx-n,z-wt)
_=1/2 S V2N 1 1
Now Wl = pl hl = pl e + R e
i(kx+n. z-wt)
W. = p -1/2 h, = p -1/2 T e 2
2 2 2 2

Applying the boundary conditions 6.2 and 6.8, at z = 0 leads immediately
to

1+R =T
v 1+R}+in (R-1) = (v, -in)T
from whence
. Vo = vy ¥ % (nl - n2)
vy - v, t i (nl + n2)
If n, is imaginary and ny real,
n, = in,’'
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and R = e 21X
Vo = Vv, +n.'
where x = tan™t -2 1 2
n
1
since |R| = 1, this corresponds to total reflection of plane body waves.
Recalling
2 _ w2, KN 2
2 2 ~V
c w
N2 = 2vg - g2/02

we see that if 2 < Vs then Nl < N2, and only acoustic waves will be
reflected. On the other hand, if Vy € Yy N2 < Nl’

gravity waves would be subject to total reflection.

then only internal

These results are shown graphically in Fig. 7, for 2] < Voo

Looking at Fig T(a) it is clear that gravity waves in the lined
area (in region 2) will not propagate in region 1, while acoustic waves
in the cross hatched area (in region 1) will not propagate in region 2.
This indicates that these waves will be reflected, as shown in (b).

In this case we have total reflection of energy from the interface with
a change of phase given by 2x.

If we have a 3 layer structure, with a region 2 of finite thick-
ness between two semi-infinite spaces of region one, we would expect
that internal gravity wave energy once in the layer, would propagate
along it, unable to get out. See Fig. 8.

This occurs because region 2 is a region of large N. In the

atmosphere, we expect regions of maximum N to act as channels for internal

waves.

Similarly, a region of minimum Wy

as does the classical low sound velocity channel.

These processes are counterparts of the optical processes of total

internal reflection, and the layers mentioned above are similar to "light

pipes".

8. Reflection and Duction in the Atmosphere.

With the general ideas of reflection, let us explore some possible

cases. We note first that for an isothermal layer

acts as a trap for acoustic waves,
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-1/2, 2 _ o1 « p1/2

/2 N =T 7, N

c« T’y v e l/T: wg < cveT
Thus, for a warm layer 1, cold layer 2, we mey draw the diagram (see
Fig. 9) for waves incident from region 1.

In this case, sound waves below a certain frequency will be
reflected by the cold layer, as will some of the gravity waves with
n, a 0. However, those with n, >> 0 (propagating upward more strongly)
will enter region 2.

In this case, the warm layer acts to reflect high frequency sound
waves and internal waves, while letting low frequencies pass through.
Note that this latter is due to a region of large N values in the region
of incidence, while the former is due to the higher sound velocity in
region 2.

In Figure 11, from Tolstoy (1963), we see a plot of ¢, N, and Wy
for the atmosphere for the lowest 200 km. Looking at the curve for ¢
(which is Tl/2) we see that very broadly we can categorize the atmosphere by
a succession of regions with warm troposphere, cold stratosphere, warm
stratopause region, colder mesopause, and hot thermosphere. Thus gqualita-
tively we could expect a series of reflecting layers, reflecting different
types of waves, with the warm thermosphere being the most important. How-
ever, when we consider layers rather than half-spaces, we must ask whether
the slab is thick enough to act as a half space. Physical insight, from
quantum mechnics and optics suggest that an incident wave may penetrate
about one wavelength into a region where it has an imeginary wave number.

If the thickness of the layer or layers is greater than this, we may expect
our half-space insight to hold. If the layer is appreciably less thick
than this, the wavelength will not notice this region very much, and inte-
grate its effect with that of the regious of real wave number on either
side,

We note also that regions of ducting are clearly shown:

1) Min wy - most important in thermosphere
2) Max N -~ Upper mesosphere, stratosphere
3) Min e - Upper mesosphere, stratosphere.

Again, wavelength considerations must be borne in mind - too long

a wavelength may not be trapped, and also may not "fit" in the waveguide.

A final point should be made here. In a non~isothermal atmosphere,
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1/p gg-can be large, and N > w This is shown for two regions of the
dz

atmosphere in Figure 11, whereodT/dz exceeds about 2.3°/kxm. In this
case, the gravity and acoustic wave sequences can not be separated.

The plot in refractive index space with w as parameter is shown in

Figure 12 (taken from Hines, 1960). The change is not great for w < .3w0

or w > 3N, but when w, < w < N there is a complete change in the diagram.

An internal gravity wgve with large horizontal and vertical wavelength
may propagate much faster than the speed of sound, while sound waves may
propagate more slowly. Most distressing, the direction of energy propa-~
gation can reverse in a very narrow interval, passing through infinite
values,

In the next lecture, we shall consider the propagation of waves

in a realistic atmosphere.
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Acoustic-Gravity Wave Ducting in the Atmosphere
by Vertical Temperature Structure

1. Early Studies of Atmospheric Wave Propagation

Lamb (1945) and Pekeris (1948) considered the propagation of
waves in one layer atmospheres, with both uniform temperatures and
constant lapse rates. Pekeris (1948) and Scorer (1950) also consid-
ered analytically the propagation in an atmosphere with a troposphere
having a constant lapse rate and an isothermal stratosphere. They
both found solutions involving confluent hypergeometrie functions,
and it is clear that an attempt to extend this to many layers would
be an involved project.

In addition, both predicted the existence of a cut off fre-
quency, below which waves would not propagate. This may be understood
by considering the temperature distribution used by Pekeris (Fig. 1).
This may be approximated by a two layer atmosphere, with the lower layer
warmer, as shown in Figure 2.

The shading represents the regions where propagating stratospheric
solutions exist; tropospheric waves in these parts of the diagram will
continue on upward, and be absent at the suface far from the source.
Conversely, those solutions for the troposphere which cannot propagate
in the stratosphere are reflected, channeled in the troposphere, and
observable at great distances. Above w, we see that no trepping exists,
and thus high frequency (short period) waves should be absent from baro-
grams of nuclear explosions measured several thousand kilometers from
the detonation, if the atmosphere has such a structure.

In fact, the solution Pekeris found corresponds to the Lamb type
waves, but agein the same reasoning holds - those trapped will be geen
at large distance, those not trapped will "leak" upward and no appreci-
able energy will remain at the surface at great distances.

The observations of these short-period waves led Yamamoto (1957)
and Hunt, Palmer and Penney (1960) to consider more complex atmospheres.
Rather than consider their results explicitly, let us see how the prob-~
lem was formulated by Pfeffer (1962) and Press and Harkrider (1962) and
see the results for some simple but illustrative atmospheres calculated
by Pfeffer and Zarichny (1962).
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Fig. 1. Temperature distribution considered by Pekeris.

Fig. 2. Characteristic diagram for two layer atmosphere with
warm troposphere, cold stratosphere.



2. Matrix Formulation of the Isothermal Layer Approach.

We shall discuss the formulation due to Pfeffer (1962), (here-
after referred to as P). That of Press and Harkrider (1962) (PH) is
very similar. Both of these papers treated the calculation of the
disturbance at a large distance from a point explosive source, and so
used cylindrical geometry. This is not necessary in a general consid-
eration of free modes; we shall continue to use rectangular coordi-
nates.

The method is to write a soluble equation for one quantity,
write a general form of the solution in each layer with undetermined
coefficients, then determine the coefficients from the boundary con-
ditions on pressure and vertical velocity. Following the classical
treatments, we may write an equation for the divergence, defined as

Bu v
d az .
We assume

i(kx-ut) i(kx-wt)

d = D(z) e R P, = P(z) e

Then, remembering equations 2.11, 2.12, and 2.10 from the first

lecture,
» .
d u w 3 2 (du , W
P 5 T "8yt [P Ut az) A
ot
2
AW _ du . 3 2 du | Iw
P35 = 8 %xto (P ( * B
ap
1 _ 2 g__ W
s - vee - e (Grr gy c
we obtain, by taking 3 of A+ 3—-of B
2 2 2 2
de 1 2 . w .k g dec 2 -
D"+ (3 ‘gY)'—zD'+[’k+ 2" 2(2d +N)| D Y
c c w
a2
Taking ——E-of B and substituting from A

3t
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2 2

k-—wh)w mcD'+g(c2k2-sw2)D (2)

2.2
(g

and from C

g
"

i—‘f—(czD-sW) (3)

(see also Lamb, 1945).

Equation (1) is a second order differential equation with variable
coefficients - the one used by Pekeris (1948) which has confluent hyper-
geometric functions as its solutions. Instead of trying to extend this
treatment, P assumed that each layer was isothermal (i.e., c2 = constant)

and used a large number of layers to express the temperature variation.

For the n‘t'h layer, we have

2 2
t s__i - 2 9—. l{__ 2 -
D" - > D' » [ k™ + 5+ 75 Nn D 0.
Cn Cn W

Solutions may be expressed as

v,z nr'lz -n;lz
D(z) = e [an e +b e J (4)
where z is measured from the base of the layer, and

2 2
n' = in = -i [9’—--1(2+£-N2-v2]
2 m2

Putting (4) into (2) gives
2 2 L 2.2 1 2 2 2 n
[sk-w]W=an[gcnk-—§gym toey n'n]e e
T 5 - 19 vz -n'z

2.2 _J_._ =4 4 ' v
+bn|_gcnk-2gyw mcnnnJe e

Putting (4) and (5) into (3) results in

vz n'z

i 1l 2 2 2 2 n n
~—-—-1w[g2k2—mh1P=an[-2-g Yy-w ¢C -8 c, n'n]e e

n
+Db 1.2 —m2c2+gc2n‘ e e
nl28 Y n n n




Now P and W are expressed in terms of the a's and b's. We could
have begun by writing a general form of the solution for W, then expres-
sing P in terms of this, and applying the boundery conditions. This re-
sults in a slightly more cumberscme set of equations (Pfeffer, private
ccmmunication) although the results would be equivalent.

To eliminate the 2N constants, we must apply 2N boundary conditioms.
These are

1. At the surface, W = 0.

2. In the top layer (a half-space) the total kinetic energy is
finite; i.e., ay = 0. Also, Pfeffer required that n'N be
real, since the interest was in propagating, not attemuating
waves.

At each of the N ~ 1 interfaces between layers, we require

1. Vertical velocities on both sides of the interface to be equal.

2. The total pressure be continuous across the interface; put in
the form p (z) - g o, ¢ = Py (2) - 8P ©

where ¢ is the height of the interface above its equilibrium value, and
Py is the perturbation pressure in the mth layer.

Since

these boundary conditions can be formulated

Wy 1 of | Y& | ™
= ighp = [Fnj (1)
PB n 1 PH PH
L n+l w . n n

where B, H denote the bottom and top of the layers, and

bo, = PH,n ~ PB,n+1-
We can now write
o -
WH _ a
= [H ]
n
PH _b
L dn n




WB a
n
PB b n .
n -
Then
WH - - WB
= [ HnJ an -1
P L J
H n PB
and from (7)
¥y [ ] 1 Wy
= F H B
n n n
P P
R | °

By induction we write

- - _
WB WB
= nN-l [ MN ]
A
P P
L B IN 5 B
or
WBN el 6 > 0
PBN 63 6 L PBl

vhich may be written

8y Wpy = 8 Ppy = 0
vhere 2,2 5_]_32: 2 2
1
W _ g cN L 2 - w cN nN
BN 2.2 N

(8)

(9)
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piw [£ 2y - w2 c 2 c 2
b = 28 ¥ v " &% W

BN g2 k2 _ wh N
This is the dispersion relationship. By specifying c2 and thick-
ness of each layer, we can solve for w(k) or V=w/k or U = %%. In

practice, this is done by a trial and error method, in the following
manner :

(1) select k;

(2) guess an w as a solution;

(3) evaluate the [MN], multiply together and get the 8's;

(4) calculate WbN, PBN;

(5) substitute in (9).

In general, this will not be a solution. One must then guess
another yp, and try again. From the size of the remainder one can soon
close in on the proper value.

(6) Do for enough values of k to get a family of w(k) or equiv-
alent curves.

Since all the numerical results to be presented are either group
or phase velocity as a function of period, Figure 3 shows the results
for an isothermal atmosphere in this new plot, as a point of reference.

In Figure 4 (from Pfeffer, 1962), results are shown for Pekeris'
atmosphere, comparing his analytic solution with a numerical calculation
in which the constant lapse rate has been approximated by 20 isothermal
layers. The agreement can be seen to be very good, indicating we have
not introduced any serious errors by our approximation method.

This was the only justification given by Pfeffer (1962). Hines
(1965) expressed dcubts ebout the validity of the isothermal layer ap-
proximation procedure, primarily because terms involving vertical deri-
vatives of scale height (or c2) were neglected. Recently Pierce (1966)
has shown that the procedure can be rigorously justified. He remarks
that the formulation by P or PH is equivalent to the expression he derives,
and is accurate so long as c2 does not change too greatly over a layer
height. As he presents no criteria for accuracy, increasing the number

of layers is probably still the best method of assessing accuracy.
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3. Hueristic Results for Simple Atmospheres.

3.1 Pekeris' Model Atmosphere

Turning now to the results themselves, we see that, as implied by
Fig. 2, we have a short period cut off. We also see that for long periods,
the group and phase velocities approach a speed 4~.91 that of the sound
speed at the ground - corresponding to a temperature of 235°K. These long

waves "feel" both stratosphere and troposphere, and perform on averaging.

3.2 Yemamoto's Model Atmosphere

The observation of waves with period below the cut off suggested
that the high temperature region of ozone absorption should be included.
In Fig. 5 we see the temperature altitude curve used by Yamamoto (1957).
In Fig. 6, taken from Pfeffer and Zarichny (1962) (P2I), we see the calcu-
lated U and V curves plotted against period. The short period cut off
has vanished, as we expect.

Also interesting is how closely the velocity-period curve is given
by the crude calculations based on the L thick isothermal layers. We can
understand this by considering that for short period (short wavelengths)
the waves are meinly confined to a single layer, while the longest ones
sample large distances, and the details of the structure do not affect
them. The discrepancies are largest near A ®**20 km which is of the order
of the layer thicknesses.

The next two figures, also from PZI, illustrate the effect of a
warm thermosphere. There are three interesting features:

(1) The thermosphere affects primarily the longest period waves.

This is to be expected - the longest wavelengths penetrate
furthest into the thermosphere.

(2) 1Inverse dispersion may occur - i.e. speed decreasing with

increasing period.

(3) A long period cut off may occur. This is illustrated

graphically in Fig. 9.

Fig. 9 shows the region of propagating ("cellular") solutions in
the hot thermosphere by shading. Solution in the lower atmosphere which
lie in these regions would not be trapped. The formetion of modes (see

next section) means only certain solutions are propagated in the lower
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atmosphere. These are illustrated by the lines lebeled n = 1, 2, 3, etc.
Each of these and the fundamentsl has a long period cut off.

4, A Brief Digression on Wave Guide Theory.

The rigid lower boundary will act to reflect a wave front incident
obliquely upon it, and we have seen that an upper structure that reflects
or refracts waves incident obliquely on it back to the surface also exists.
The possibility of forming a wave guide mode of crossing wave fronts exists.
In addition, we can have waves for which both reflections take place above
the surface. A very lucid treatment of this subject, developing electro-
magnetic and acoustic theory together, is given by Budden (1961). We will
follow his treatment in the first part of this section.

Consider a wave guide whose boundaries are the planes z = 0 and z =
h, with reflection coefficients

_ _2iye 2 =0
Ry (8) = e o (1)

R(8) e~2ixt z=h

for a plane wave whose normal mekes an angle 6 with either boundary.

If some quantity obeying the wave equation is given by

- -i(kx+nz)
Fl = Fo e

After reflection at z = h, and return to the lower boundary

- -i(kx-nz) -2inh
F2 = R(9) FO e e

(the last factor takes account of phase change of the wave in traveling
up to and back from the upper boundary). After F2 is reflected from the

bottom,

F,. = Rg(e) R(6) e‘zi“h

3 F

1°

The condition that a wave guide exists is that Fl and F3 must be identical.

This requires

R(e) Rg(e) e‘2i“h = 1. (2)
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For a plane of perfect reflection, R = 1. Thus, if upper and lower

surfaces are rigid boundaries,

o-2inh

or
nh = nr (3)

where m is an integer, the mode number.

Those modes are similar to TM electromagnetic modes, and are shown in
Fig. 10 (after Budden, 1961). Note that an m = O mode is possible here.

A free surface is one which cannot sustain any change of pressure.
For displacements, R = -1. Again we find nh = mr, but a detailed study of
the equations indicate that they are like TE electromagnetic modes. Their
properties are shown in Fig 11 (after Budden, 1961). Here no m = O mode is
possible,

The more usual geophysical case is given by one rigid and one free

boundary. Here we find
nh = (m-1/2) = (%)

and again no m = 0 mode is possible. Here u and w are shown in Fig. 12
(from Budden, 1961). The particle motions are shown in Fig. 13.

We can write
K sin 6 = n (5)
where K is the wave number along the direction of a wave normal. Then
Khsin 8 = (m - 1/2)n (6)

has a minimum frequency of propagation, corresponding to sin 6 = 1, and,
with K = /e
c c
(m - 1/2) me (7)

7 .\ -
w -
e\ h
w

In general ;E-= sin 6, (8)

and noting that the wave fronts move in the x direction so that kx - wt =

K cos 6x - wt = const., the phase velocity is given by

- 2/w2)-l/2 (

- S -
Vv = =c(1 - W, 9)

v =
K cos 6 cos 6

wie
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w 2 1/2
The group velocity is U = ¢ (l - QETJ (10)
w
This behavior is shown in Fig. 1bk.
In the general case, from (1) and (2)
nh = x(68)+ + x(8)+ + mm (11)

For stratified media, Tolstoy (1954) shows how reflection coeffici-
ents may be calculated for a layered mediut, and how this formulation may
be generalized to a medium with continuously varying parameters. In
general, x depends on w and k. For thick layers (approximating half spaces)
the method of calculeting reflection coefficients has been discussed in the
first lecture.
Equation (11) mekes very clear that there are two sources of dispersion:
(1) Dispersion appearing in the equations for n. This depends
on internal fluid resonances, and appeérs in unbounded fluids.
Tolstoy (1963) has termed this structural dispersion.

(2) The interference between upward and downward traveling waves
leads to dispersion. This has been termed geometric dispersion
by Tolstoy (1963).

Tolstoy also shows that for exponential modes (n2 < 0), m = 0. There
is then no vertical phase variation, the wave fronts are normal to the planes
of stratification. These are the Lanb type waves, which thus play the role
of the zeroth acoustical mode. This is the wave which has been discussed
until this point. Following PZI, we shall refer to this as the fundamental.

The effect of the bounderies is to "quantize" the vertical wave number
n, forcing it to assume (non-zero) integer values. This is shown for the
case of the ocean in Fig. 15 (frem Eckart, 1960). Although this is simpler

than the atmosphere, it illustrates the general behavior

S. Higher Modes in Simple Atmospheres.

We see in Fig. 15 that there are several discrete w's corresponding to
a single k, which are all solutions. These have been calculated by PZI, for
Yamamoto's atmosphere. Since the warmest layer is the upper half-space,
there are long period cut-offs for these modes.

It is more instructive however to consider in greater detail the series
of calculations by Pfeffer and Zarichny (1963) and Pfeffer (1964)



Fig. 15.

n=3

ACOUSTIC NODES

SURFACE WAVES

GRAVITATIONAL
MODES

w vs k diagram for the general case of an ocean of constant
depth and constant N, wp, and c¢. Low freauency region near
the earth's rotation frequency Q2 is not considered here.
(After Eckart, 1960)
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on the COSPAR atmosphere, which is shown in Figure 16. In this section we

shall consider the higher modes for the COSPAR atmosphere terminated at 52

km by an isothermal half space. Later we will consider the effects of ter-
mination at 110, 300, and T0O km.

In the case of 52 km termination there is just one temperature
minimum, or conventional sound channel. The fundamental and higher modes
are presented by Pfeffer (1964) and shown in Fig. 17. Note that we again
have long period cut-offs in both acoustic and gravity modes. This is due
to longer wavelengths in the duct becoming incident at higher angles on
the half space, until they are no longer returned. The fundamental is not
cut off because the upper half space is slightly cooler than the surface.
The longer periods for the fundamental have higher velocities than the
shorter periods.

Figure 18, also from Pfeffer (196L4) shows the location of the kinetic
energy for the various modes at various periods. (The temperature profile
is to the left.)

Taking the fourth acoustic (4A) mode as an example, we note the four
nodal planes at 16 and 21 sec periods, and the limited energy along the tem-
perature incline. At 25 seconds, the energy curve is not coming back to zero
at the top. Energy is penetrating on into the half space, and not being re-
turned. This is the cut-off period for this mode. Here the ducting seems
to be between the two regions of high temperature.

On the other hend, the fourth gravity mode has only 3 nodes. Again
mode cut off is signalled by the sudden increase in half space energy -
here at 340 sec period.

The behavior of the gravity modes is less easily understood than the
acoustic modes. However, we note the tendency to concentrate in the region
of large N (along the temperature inciine). This regicn eppears to be the
duct for the first gravity mode at 288 seconds.

At 303 seconds, where the wavelength is greater, the lower reflecting
region seems at the top of the region of negative temperature gradient, and
eventually at the ground.

The fundamental energy, at short periods, is concentrated in the low
speed channel - where we saw the acoustic energy was. Note the similarity
between the 85 sec, Fundamental and 1A at 80 seconds, and the difference at
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103 and 93, respectively. At long periods its exponential character becomes
very clear with energy concentrated at the surface. It is the higher speed
at the warm surface than in the cold channel which increases the fundamental
velocity with increasing period.

The real atmosphere possesses two temperature minima, of course, but
the modes of the lower channel are very helpful in understanding the modes
of the whole atmosphere.

6. Ducting in an Atmosphere with Two Sound Chennels.

PZI noted that important characteristics of waves recorded at the
earth's surface due to explosions in the lower atmosphere might be strongly
influenced by the mesospheric temperesture minimum, and that firm conclusions
about wave propagation in the atmosphere required theoretical calculations
based on models with two sound channels. Velocity-period relationships for
atmospheres with two minima have been obtained by Gazaryan (1961), Weston
(1962), Press and Harkrider (1962) and Pfeffer and Zarichny (1963) (here-
after denoted as PZ II).

6.1 Effect of termination height on the Fundamental mode.
PZ II calculated the properties of the fundamental and compared the
results when the atmosphere was terminated by an isothermal half space at

52, 110, and 130 km. The results are shown in the next figure (19). An
immediately comprehensible effect is the lower short period velocity for

the 110 and 130 km atmospheres, due to the concentration of short period
acoustic-like waves in the upper (slow) sound channel. We also note the
high velocity of long-period waves, due to the influence of the high tem-
perature, high speed region, between 110 and 130 km.

In the upper portion of figure 20 is a plot of kinetic energy density
against altitude. It shows that, for short pericds, the kinetic energy den-
sity of the waves is concentrated in the stratospheric sound channel for the
52 km model, and in the mesopause channel for the 110 and 130 km models.

The intermediate period waves (150-290 sec), which have horizontel
wavelengths from 46-94 km, will not fit in either channel. These are bound
to the rigid surface of the earth, with kinetic energy decreasing exponen-
tially with height. These wave speeds are not influenced significantly by

temperature distribution above the stratopause. The previous figure showed
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that the group and phase velocities nearly coincide over this range of periods.
For periods > 290 sec, the waves are sensitive only to major differ-

ences between the lower and upper atmospheres. The kinetic energy per unit

volume decreases exponentially with altitude in the 52 and 110 km models,

but is confined to the upper atmosphere in the 130 km model. The exponential

decrease with height in the first two cases is characteristic of all models

in which the temperature maximum is at the surface.

6.2 Modes in the 300 km COSPAR Atmosphere.

Proceeding as before to find all w's associated with a particular k,
PZ II shows, for the 300 km COSPAR atmosphere, the velocity-period curves
shown in Fig. 21.

Here we see the great complexity of 5 acoustic and 5 gravity modes,
with greater detail on the inset. Not shown,the fundamental has a cut-off
for period > 1000 sec, due to the warm thermosphere and all other modes cut
off before this. This, of course, refers to the surface, and only means that
energy is leaking up from the lowest layers. The cut-offs are shown more
clearly in Fig. 22 for a similar atmosphere, calculated by PH, although their
fundamental does not cut off. Note that S0 is what we have called the funda-
mentel, Sl is the first acoustic, etc., while GRo is what we have called the
first gravity mode.

In Figure 23 we see the same calculation on an expanded velocity scale,
and compared to the 52 km "fundamental" and first acoustic mode.

Note that the phase velocity curves for the fundaemental mode, first
gravity mode and the first three acoustic modes are step~like functions, with
rather steep short and long period branches, separated from one another by
nearly horizontal intermediate period branches.

The group velceity curves have broad maxima, separated from one another
by small but distinct intervals of period. The most surprising point is that
selected horizontal portions of the phase velocity cuves coincide with the
phase velocity curve of the 52 km model atmosphere, while other horizontal
portions coincide with the first acoustic. The plateaus of the group veloc-
ity curves coincide with the 52 km group velocity curves. Not only do the
horizontal portions lie along common lines, but the vertical portions of the

curves for different mode numbers are seen to be very closely aligned.
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PZ II agrees with the conclusion of PH that "the character of the propagating
disturbance at any time is perhaps better represented by pseudo-dispersion
curves formed by segments of several modes". These horizontal portions are
clearly strongly dependent on the lower sound channel and the warmer regions
around it. PH present all the properties of their dispersion curves which are
unaffected by what happens above 100 km, and these are, in agreement with

PZ II, the horizontal portions. The vertically rising portions of the curves
depend on the atmosphere above 110 km, and therefore we would not expect them
to be strongly excited by near surface disturbances, whether of the lee-wave
or point impulse type. In addition, amplitudes are proportional to (dU/dP)—l/2
(where P is the period); again, we expect little surface amplitude at these
periods.

This suggests that one might look for these holes in the spectrum on
observed barograms. PZ II does this in a very ingenious manner, and presents
evidence from recorded barograms that narrow intervals of period are missing
for periods where these vertical curve segments are.

The effect of latitudinal and seasonal variations have been calculated
by PZ II and PH. However, these affect mainly the lower atmosphere, and thus
say little about the wave spectrum above the second sound channel. Variations
in this region have been incorporated by PZ II, whose results are shown in
Figure 24. Note that the COSPAR atmosphere appears to allow higher frequency
(shorter period) waves to leak upward in both the fundamental and first grav-
ity modes. It would be interesting to look for a variation in wave spectra
at ionospheric heights with sunspot cycle, to see if there is this tendency

for high solar index to go with longer period waves.

6.3 Mode interaction.

Let us take a moment to try to undercitand this phencmenon of mode
segments corresponding to portions of larger curves. Tolstoy (1956) has
discussed the technique of separating a complex layered waveguide into two
partial waveguides along a nodal surface. Then free boundary conditions
are applied along this surface, the two guides are solved separately, and
then overlaid. For those values of w having the same k's as solutions, this
w, k is applicable to the complete wave guide. If the mode number of the

lower guide is ¢, the upper u, and of the complete guide m, then
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L+u = m (1)

Considering a temperature structure like that in Fig. 16, let us
imsgine a boundary surface through the stratopause region at 52 km. Now
considering separately the w, k solutions of the upper and lower guides,
we find that the vertical curves correspond to sections of acoustic modes
of the upper channel, while as noted, the horizontal portions are similar
to the fundamental and first acoustic of the lower channel. We can trans-
ferm the PZ results into the w-k plane as indicated in Fig. 25.

Letters have been put in, corresponding to the appropriate portion
of the PZ II curves. The curves have also been labeled with mode numbers
u and & for the two half-wave guides. Where intersections occur, solu-
tions for the whole wave guide are possible, with m given by (1).

In common with Tolstoy's (1955, 1956) findings about elastic wave
propagation, the modes of the complete wave guide follow a path made up ap-
proximately of segments of upper modes alternating with segments of lower
guide modes. Consider, for example, the path beginning on u = 2. This is
a solution to the whole wave guide, with m = 2, with both nodes (and we ex-
pect, the energy) in the upper channel. At the intersection (2,0) with
the lower fundamental, the complete mode switches to follow the lower mode
line. We anticipate energy in the lower channel now, in common with an
atmosphere with no upper channel. The upper guide, with little energy
concentration, is altering its solution. At the next intersection, (1,0),
the complete mode again switches to the upper mode - energy is in the upper
channel, and the lower channel solution is in transition to one with one
mode - the lower first acoustic.

As implied above, when the complete guide mode is following an
upper mode line, its characteristics are those of the upper guide, and it
is strongly coupled to the upper modes; similarly, on the lower mode seg-
ments it looks like a lower mode.

This is completely corroborated by the energy density curve of PZ II
(Fig. 26). Looking first at the horizontal portions of the velocity-period
curves, we note the close correspondence between the energy density of the
modes (written in the form m (u,2)), 3(3,0), 2(2,0), 1(1,0) -1(-1,0) and
the 2 = 0 mode of the lower channel alone. Also 4(3,1) and 3(2,1) follow
the £

"

1 line. Similarly, looking at the vertical portions, we see g, f
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and r are 3(3,0), 4(3,1) 5(3,2) all have u = 3, and i, h, s are 2(2,0),
3(2,1), 4(2,2) have u = 2. Note also that £ = 1 corresponds to one

energy minimum in the lower channel, and u

2 or 3 correspond to 2 or
3 energy minime in the upper channel. In the vertical branches, there is
so little energy in the lower channel that the number of nodes cannot be

seen on this scale,

Another interesting sequence is to follow the course of m = 3 and

m= 2,
m=3 m=2
Curve u 2 P Curve u ) P
section section
g 3 14 sec i 2 34 sec
0 2T sec b 0 36 sec
h 2 39 sec 3 1 46 sec
b’ 1 56 sec

A further corroboration of the nature of the vertical portions of
the curves is seen in Fig. 27, which is for an atmosphere with a rigid top
and isothermal half-space at the surface. Since the fundamental depends
upon the lower boundary for its existence, it should disappear. On the
other hand, since all but the longest period waves are located below 300 km,
the presence of the lid should have little effect. This is seen to be the
cace. The gravity modes are identified by their approach to a long period
high velocity asymptote, while the acoustic modes approach infinite veloci-
ties or cut off at long periods.

One can ask for further physical insight into these points of sudden
change. It appears from the formulation of Eckart (1960) that they are re~-
lated to the relative positions of the points where w = N(z) and w/k = C(z).
In his formulation of the problem, the relative positions of these points on
& phase disgram determine the character of the solution. After a qualitative
examination of the solutions for an atmosphere with one temperature minimum,
and constant lapse rate thermosphere he remarhs that when the vertical de-
scription of the solution "...contains two oscillatory segments separated by
a non-oscillatory one, small changes in k and w may produce large quantita-
tive changes in the phase path." These changes include switching the maximum

amplitude between upper and lower channels.
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The phase diasgrams also explain the appearance of extra nodes in the
numerical calculations of a given mode, since it is possible to add any num-
ber of pairs of cancelling nodes without affecting the net mode number. The
application of an Eckart-type analysis of the modes of an atmosphere with
two temperature minima should provide further understanding of the relevant
mode intepactions taking place.

6.4 Energy density.

Energy density diagrams (Figs. 26 and 28) provide quite useful infor-
mation, since neither pressure oscillations nor wave motions can be observed
where there is no energy.

The interesting case of pressure oscillations and simultaneous iono-
spheric disturbances is seen to be rare, but we quickly note possibilities
at about 270 sec (F,1G), 707 sec (1G,2G) 400 to 497 sec (3G). These are
also the periods we would expect to see excited by broad band sources in the
lower atmosphere, like volcanic activity, earthquakes and atmospheric motions.

Similarly, the periods for which large amounts of energy are leaked
into the ionosphere can be picked out - 1077 sec (F) and 720 to 800 sec (1G).
These might be observable at great heights.

T. BSome Diabatic Effects

T.1 Radiative damping of acoustic gravity waves.

Golitsyn (1965) calculates that in the troposphere, the damping of
waves by radiative heat transfer will be 6 orders of magnitude greater than
the viscous damping, although he finds at 100 km the radiation damping will
be less than viscous damping, as the viscous damping increases while radia-
tion damping decreases somewhat with height (Golitsyn, 1963).

This numerical result is based on a simple model of gray or frequency
independent absorption. Unfortunately, this model may lead to qualitetively
misleading results as well as numerical inaccuracy. The expression for radi-
ative dissipation of a temperature disturbance in a gray gas has been
transformed by Goody (1964) into a form applicable to a non-gray gas. The
validity of this technique for the calculation of radiative stabilization

of a fluid against cellular convection has been demonstrated by Gille and
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Goody (196k). Quantitative studies of radiative damping in the real atmos-
phere should be made. Laboratory testing may also be possible.

One particularly interesting possibility is that very low frequency
waves may propagate with the isothermal sound velocity, CT = VRT rather
than the adiabatic velocity C_ = YYRT.

7.2 Photochemical destabilization of gravity wave near the mesopause.

A number of recent studies, notably Leovy (196L4) and Lindzen and Goody
(1965), have developed linearized forms of the equations of motion in which
photochemical and radiative heat sources are included. Naturally enough these
involve & considerable number of drastic simplifications. Leovy (1966) has
applied these ideas to gravity waves near the mesopause. If an amplification
mechanism can be found, i.e., mechanism giving the waves in the mesosphefe a
positive growth rate, it would be nearly equivalent to putting a source in
this region. A strongly attenuated wave coming up from below'could have
energy fed into it and amplify to observable size. If the amplification
mechanism is frequency dependent, it has implications for the expected re-
sulting spectrum.

We can see the physical basis for an amplification if we consider a
column of the atmosphere displeced from its equilibrium position. If it is
warmed by diabatic processes when displaced upward, it will be at a higher
temperature when it comes down, and have less negative buoyancy than on the
way up. Clearly, the restoring force has been reduced, and the wave ampli-
tude will be attenuated. Here, we have a negative correlation between tem-
perature and vertical velocity - a circumstance known in theoretical
meteorology to be associated with the destruction of kinetic energy.

Conversely, if the column cools on upward displacement, its negative
buoyancy is reduced, and it comes down with greater velocity through the
equilibrium position than it possessed going up.

What diabatic processes might be involved? Leovy's (1966) treatment
included the photochemistry of oxygen and ozone, and led to perturbation
terms representing the following effects:

(1) Avsorption of solar radiation by fluctuating amounts of molecular
oxygen;

(2) Absorption of solar radiation by fluctuating amounts of ozone;
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(3) Chemical energy released by formation of molecular oxygen and ozone
from atomic oxygen.
(k) Infrared radiation.

I will merely state here the results he found, which apply to gravity
waves with period 103 seec < P < 106 sec. First, since infrared radiation
acts to destroy the temperature difference between the displaced column and
its surroundings, destroying buoyancy, this always destroys wave energy.
Second, the recombination heating and absorption of solar energy by ozone is
a destabilizing effect, when the atomic oxygen mixing ratio increases with
height. However, absorption by molecular oxygen is stabilizing under these
circumstances.

In a numerical calculation, he finds an exponential growth rate
(omitting infrared radiative effects) greater than 3 x 10"'6 sec™! near 90 km,
for w > 2.1o'h (P~ 1 1/2 hours). This indicates a doubling of amplitude in
2 1/2 days. The radiative demping is roughly calculated to be 10-6 sec, and
eddy losses about the same for A ~ 30 km. Deamping thus will still remove all
but the longest waves.

These results apply to mean conditions, and growth rates vary as the
square of the atomic oxygen concentration. Since it appears that the upper
winter mesosphere may be oxygen rich, this mechanism could be given a quali-
tative test by looking for seasonal variation of wave amplitudes and spectra
in the upper mesosphere.

Certainly there are a number of very interesting ideas in this paper,

and further work on these lines should be undertaken.

8. Future Problems in Wave Theory.

As is certainly clear, at present only a beginning has been made in
the study of acoustic-gravity wave propagation in the aimosphere. Some
important problems remeining have been discussed elsewhere - notably the
effects of winds, electromegnetic forces, and non-linear interactions. The
diabatic effects of radistive heating and photochemistry have been mentioned
above.

There are still important problems connected with the ducting effects
of temperature structure. Eckart (1960) and Weston (1961, 1962) and Pitteway
and Hines (1965) have deduced general results for continous distributions
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of atmospheric parameters. A number of theoretical difficulties have been
lucidly set forth by Hines (1965), and although some have been answered by
Pierce (1966), it appears that more work will be necessary before the nature
of ducting and mode formation is fully clarified.

The effect of horizontal variations also remains for future consid-
eration. Although velocity period curves have been calculated for differ-
ent latitudes by PZ IT and PH, no one has considered propsgation along &
path in which there are horizontal variations of temperature, heights of
thermal features, topography, or wind. This is relevant to the upper atmos-
phere observer as well as the constructor of synthetic barograms, since
energy not confined in a2 duct may be available to excite disturbances at E
region heights. (This problem has been suggested by Pfeffer.)

In all our discussion of wave propatation, we have said very little
about sources of wave energy. Until we have a clear picture of the reflec-
tion and dissipation processes in an atmosphere with winds, it will be
difficult to know whether the source of energy lies in the lower atmosphere
or not. It is clear that nuclear explosions, volcanic eruptions and earth-
quakes do create wave trains at great heights. Under what conditional
meteorological disturbances in the troposphere are able to propagate energy
to these heights is not clear.

A final question might be whether, by observation at the surface or
with ionospheric sounding, we can obtain an atmospheric seismogram, which
could then be inverted to yield information about the atmosphere or the
source. J. V. Dave of the U.S. National Center for Atmospheric Research
has remarked that the Umkehr method of cbtairning height distribution of
ozone is like unscrambling an egg. If so, we have the ocmlet of source,
wind, and temperature to unscremble and properly reconstitute. A real start
on this would not asppear possible until we have bvet
forward problem.

Looking back at these rather large holes in our knowledge, it seems
fair to say that the development of theory enabling us to handle the com-
plexity we see in nature, and the observational search for confirmation of
these theories promise to keep us supplied with challenging problems for

the foreseeable future.
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