30,113 research outputs found

    Bell's inequality and the coincidence-time loophole

    Get PDF
    This paper analyzes effects of time-dependence in the Bell inequality. A generalized inequality is derived for the case when coincidence and non-coincidence [and hence whether or not a pair contributes to the actual data] is controlled by timing that depends on the detector settings. Needless to say, this inequality is violated by quantum mechanics and could be violated by experimental data provided that the loss of measurement pairs through failure of coincidence is small enough, but the quantitative bound is more restrictive in this case than in the previously analyzed "efficiency loophole."Comment: revtex4, 3 figures, v2: epl document class, reformatted w slight change

    A geometric proof of the Kochen-Specker no-go theorem

    Full text link
    We give a short geometric proof of the Kochen-Specker no-go theorem for non-contextual hidden variables models. Note added to this version: I understand from Jan-Aake Larsson that the construction we give here actually contains the original Kochen-Specker construction as well as many others (Bell, Conway and Kochen, Schuette, perhaps also Peres).Comment: This paper appeared some years ago, before the author was aware of quant-ph. It is relevant to recent developments concerning Kochen-Specker theorem

    Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires

    Get PDF
    Proposals for studying topological superconductivity and Majorana bound states in nanowires proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor systems has shown evidence for Majorana bound states, but these experiments were also marked by disorder, which disrupts ballistic transport. In this letter, we demonstrate ballistic transport in InSb nanowires interfaced directly with superconducting Al by observing quantized conductance at zero-magnetic field. Additionally, we demonstrate that the nanowire is proximity coupled to the superconducting contacts by observing Andreev reflection. These results are important steps for robustly establishing topological superconductivity in InSb nanowires

    Experimenter's Freedom in Bell's Theorem and Quantum Cryptography

    Full text link
    Bell's theorem states that no local realistic explanation of quantum mechanical predictions is possible, in which the experimenter has a freedom to choose between different measurement settings. Within a local realistic picture the violation of Bell's inequalities can only be understood if this freedom is denied. We determine the minimal degree to which the experimenter's freedom has to be abandoned, if one wants to keep such a picture and be in agreement with the experiment. Furthermore, the freedom in choosing experimental arrangements may be considered as a resource, since its lacking can be used by an eavesdropper to harm the security of quantum communication. We analyze the security of quantum key distribution as a function of the (partial) knowledge the eavesdropper has about the future choices of measurement settings which are made by the authorized parties (e.g. on the basis of some quasi-random generator). We show that the equivalence between the violation of Bell's inequality and the efficient extraction of a secure key - which exists for the case of complete freedom (no setting knowledge) - is lost unless one adapts the bound of the inequality according to this lack of freedom.Comment: 7 pages, 2 figures, incorporated referee comment

    Float zone experiments in space

    Get PDF
    The molten zone/freezing crystal interface system and all the mechanisms were examined. If Marangoni convection produces oscillatory flows in the float zone of semiconductor materials, such as silicon, then it is unlikely that superior quality crystals can be grown in space using this process. The major goals were: (1) to determine the conditions for the onset of Marangoni flows in molten tin, a model system for low Prandtl number molten semiconductor materials; (2) to determine whether the flows can be suppressed by a thin oxide layer; and (3) based on experimental and mathematical analysis, to predict whether oscillatory flows will occur in the float zone silicon geometry in space, and if so, could it be suppressed by thin oxide or nitride films. Techniques were developed to analyze molten tin surfaces in a UHV system in a disk float zone geometry to minimize buoyancy flows. The critical Marangoni number for onset of oscillatory flows was determined to be greater than 4300 on atomically clean molten tin surfaces

    Deep optical imaging of nova remnants II. A southern-sky sample

    Full text link
    We present an optical imaging study of 20 southern-sky nova remnants which has resulted in the discovery of four previously unknown nova shells -- V842 Cen, RR Cha, DY Pup and HS Pup. The study has also revealed previously unobserved features in three other known shells -- those of BT Mon, CP Pup and RR Pic. The images of BT Mon, V842 Cen, RR Cha, DY Pup and HS Pup have been processed using several deconvolution algorithms (Richardson-Lucy, maximum entropy and clean) in addition to straightforward point-source subtraction in an attempt to resolve the shells from the central stars. The use of four different methods enables us to make a qualitative judgement of the results. Notably, the shell of RR Pic displays tails extending outwards from clumps in the main ejecta similar to those previously detected in DQ Her.Comment: Accepted for publication by MNRA
    • …
    corecore