20 research outputs found

    Long-term supplementation with anthocyanin-rich or -poor Rubus idaeus berries does not influence microvascular architecture nor cognitive outcome in the APP/PS-1 mouse model of Alzheimer’s disease

    Get PDF
    Disruption of microvascular architecture is a common pathogenic mechanism in the progression of Alzheimer’s disease (AD). Given the anti-angiogenic activity of berry (poly)phenols, we investigated whether long-term feeding of Rubus idaeus (raspberries) could ameliorate cerebral microvascular pathology and improve cognition in the APP/PS-1 mouse model of AD. Male C57Bl/6J mice (50 wild type, 50 APP/PS-1) aged 4-months were fed for 24-weeks, with a normal diet enriched with either 100 mg/day glucose (control diet) or supplemented with glucose and freeze-dried anthocyanin-rich (red) or -poor (yellow) raspberries (100 mg/day) and assessed/sampled post intervention. Cerebral microvascular architecture of wild-type mice was characterised by regularly spaced capillaries with uniform diameters, unlike APP/PS-1 transgenic mice which showed dysregulated microvascular architecture. Long-term feeding of raspberries demonstrated limited modulation of microbiota and no substantive effect on microvascular architecture or cognition in either mice model although changes were evident in endogenous cerebral and plasmatic metabolites

    Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity

    Get PDF
    Abstract Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility
    corecore