322 research outputs found
Evolution of magneto-orbital order upon B-site electron doping in Na1-xCaxMn7O12 quadruple perovskite manganites
We present the discovery and refinement by neutron powder diffraction of a
new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram,
which is the incommensurate analogue of the well-known pseudo-CE phase of the
simple perovskite manganites. We demonstrate that incommensurate magnetic order
arises in quadruple perovskites due to the exchange interactions between A and
B sites. Furthermore, by constructing a simple mean field Heisenberg exchange
model that generically describes both simple and quadruple perovskite systems,
we show that this new magnetic phase unifies a picture of the interplay between
charge, magnetic and orbital ordering across a wide range of compounds.Comment: Accepted for publication in Physical Review Letter
Thermoelectric behavior of Ruddlesden-Popper series iridates
The goal of this work is studying the evolution of thermoelectric transport
across the members of the Ruddlesden-Popper series iridates Srn+1IrnO3n+1,
where a metal-insulator transition driven by bandwidth change occurs, from the
strongly insulating Sr2IrO4 to the metallic non Fermi liquid behavior of
SrIrO3. Sr2IrO4 (n=1), Sr3Ir2O7 (n=2) and SrIrO3 (n=inf.) polycrystals are
synthesized at high pressure and characterized by structural, magnetic,
electric and thermoelectric transport analyses. We find a complex
thermoelectric phenomenology in the three compounds. Thermal diffusion of
charge carriers accounts for the Seebeck behavior of Sr2IrO4, whereas
additional drag mechanisms come into play in determining the Seebeck
temperature dependence of Sr3Ir2O7 and SrIrO3. These findings reveal close
relationship between magnetic, electronic and thermoelectric properties, strong
coupling of charge carriers with phonons and spin fluctuations as well as
relevance of multiband description in these compounds.Comment: main paper + supplementary informatio
Synthesis and characterization of multiferroic BiMnO
We report on the high pressure synthesis of BiMnO, a manganite
displaying a "quadruple perovskite" structure. Structural characterization of
single crystal samples shows a distorted and asymmetrical coordination around
the Bi atom, due to presence of the lone pair, resulting in
non-centrosymmetric space group Im, leading to a permanent electrical dipole
moment and ferroelectric properties. On the other hand, magnetic
characterization reveals antiferromagnetic transitions, in agreement with the
isostructural compounds, thus evidencing two intrinsic properties that make
BiMnO a promising multiferroic material.Comment: 4 pages, 3 figure
Lower energy and pulse stacking. a safer alternative for skin tightening using fractional co2 laser
To evaluate the effect of different energies and stacking in skin shrinkage. Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically evaluated for microthermal zones dimensions. Groups II and III (n=10 each) were macroscopic evaluated with freeware ImageJ for area contraction immediately and after 30 and 60 days. No statistical significance was found within microthermal zone histological dimensions (Group I) in all settings studied. (Ablation depth: 76.90 to 97.18µm; Coagulation depth: 186.01 to 219.84 µm). In Group II, macroscopic evaluation showed that all settings cause significant immediate skin contraction. The highest setting cause significant more intense tightening effect initially, contracting skin area from 258.65 to 179.09 mm2. The same pattern was observed in Group III. At 30 and 60 days, the lowest setting significantly sustained contraction. Lower fractional CO2 laser energies associated to pulse stacking could cause consistent and long lasting tissue contraction in rats.To evaluate the effect of different energies and stacking in skin shrinkage. Methods: Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically ev3112835sem informaçãosem informaçã
A temperature-dependent physiologically based model for the invasive apple snail Pomacea canaliculata
In order to set priorities in management of costly and ecosystem-damaging species, policymakers and managers need accurate predictions not only about where a specific invader may establish but also about its potential abundance at different geographical scales. This is because density or biomass per unit area of an invasive species is a key predictor of the magnitude of environmental and economic impact in the invaded habitat. Here, we present a physiologically based demographic model describing and explaining the population dynamics of a widespread freshwater invader, the golden apple snail Pomacea canaliculata, which is causing severe environmental and economic impacts in invaded wetlands and rice fields in Southeastern Asia and has also been introduced to North America and Europe. The model is based on bio-demographic functions for mortality, development and fecundity rates that are driven by water temperature for the aquatic stages (juveniles and adults) and by air temperature for the aerial egg masses. Our model has been validated against data on the current distribution in South America and Japan, and produced consistent and realistic patterns of reproduction, growth, maturation and mortality under different scenarios in accordance to what is known from real P. canaliculata populations in different regions and climates. The model further shows that P. canaliculata will use two different reproductive strategies (semelparity and iteroparity) within the potential area of establishment, a plasticity that may explain the high invasiveness of this species across a wide range of habitats with different climates. Our results also suggest that densities, and thus the magnitude of environmental and agricultural damage, will be largely different in locations with distinct climatic regimes within the potential area of establishment. We suggest that physiologically based demographic modelling of invasive species will become a valuable tool for invasive species managers
Implementation of a socio-ecological system navigation approach to human development in Sub-Saharan African communities
This paper presents a framework for the development of socio-eco- logical systems towards enhanced sustainability. Emphasis is given to the dynamic properties of complex, adaptive social-ecological systems, their structure and to the fundamental role of agriculture. The tangible components that meet the needs of specific projects executed in Kenya and Ethiopia encompass project objectives, innovation, facilitation, continuous recording and analyses of monitoring data, that allow adaptive management and system navigation. Two case studies deal with system navigation through the mitigation of key constraints; they aim to improve human health thanks to anopheline malaria vectors control in Nyabondo (Kenya), and to improve cattle health through tsetse control and antitrypanosomal drug administration to cattle in Luke (Ethiopia). The second case deals with a socio-ecological navigation system to enhance sustainability, establishing a periurban diversified enterprise in Addis Ababa (Ethiopia) and developing a rural sustainable social-ecological system in Luke (Ethiopia). The project procedures are briefly described here and their outcomes are analysed in relation to the stated objectives. The methodology for human and cattle disease vector control were easier to implement than the navigation of social-ecological systems towards sustainability enhancement. The achievements considerably differed between key constraints removal and sustainability enhancement projects. Some recommendations are made to rationalise human and cattle health improvement efforts and to smoothen the road towards enhanced sustainability: i) technology system implementation should be carried out through an innovation system; ii) transparent monitoring information should be continuously acquired and evaluated for assessing the state of the system in relation to stated objectives for (a) improving the insight into the systems behaviour and (b) rationalizing decision support; iii) the different views of all stakeholders should be reconciled in a pragmatic approach to social-ecological system management
Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMnMnO
By means of neutron powder diffraction, we investigated the effect of the
polar Bi ion on the magnetic ordering of the Mn ions in
BiMnMnO, the counterpart with \textit{quadruple} perovskite
structure of the \textit{simple} perovskite BiMnO. The data are consistent
with a \textit{noncentrosymmetric} spacegroup which contrasts the
\textit{centrosymmetric} one previously reported for the isovalent and
isomorphic compound LaMnMnO, which gives evidence of a
Bi-induced polarization of the lattice. At low temperature, the two
Mn sublattices of the and sites order antiferromagnetically
(AFM) in an independent manner at 25 and 55 K, similarly to the case of
LaMnMnO. However, both magnetic structures of
BiMnMnO radically differ from those of LaMnMnO.
In BiMnMnO the moments of the sites form
an anti-body AFM structure, whilst the moments \textbf{M} of the
sites result from a large and \textit{uniform} modulation along the b-axis of the moments \textbf{M} in the
-plane. The modulation is strikingly correlated with the displacements of
the Mn ions induced by the Bi ions. Our analysis unveils a strong
magnetoelastic coupling between the internal strain created by the Bi
ions and the moment of the Mn ions in the sites. This is ascribed to
the high symmetry of the oxygen sites and to the absence of oxygen defects, two
characteristics of quadruple perovskites not found in simple ones, which
prevent the release of the Bi-induced strain through distortions or
disorder. This demonstrates the possibility of a large magnetoelectric coupling
in proper ferroelectrics and suggests a novel concept of internal strain
engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table
Solvability of subprincipal type operators
In this paper we consider the solvability of pseudodifferential operators in
the case when the principal symbol vanishes of order at a nonradial
involutive manifold . We shall assume that the operator is of
subprincipal type, which means that the :th inhomogeneous blowup at
of the refined principal symbol is of principal type with Hamilton
vector field parallel to the base , but transversal to the symplectic
leaves of at the characteristics. When this blowup
reduces to the subprincipal symbol. We also assume that the blowup is
essentially constant on the leaves of , and does not satisfying the
Nirenberg-Treves condition (). We also have conditions on the vanishing
of the normal gradient and the Hessian of the blowup at the characteristics.
Under these conditions, we show that is not solvable.Comment: Changed the formulation of Theorem 2.15, added an assuption.
Corrected errors and clarified the arguments. Added reference
Lithium carbonate and coenzyme Q10 reduce cell death in a cell model of Machado-Joseph disease
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of the polyglutamine domain of the ataxin-3 (ATX3) protein. MJD/SCA3 is the most frequent autosomal dominant ataxi4912FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2007/57559-9; 2013/07559-3sem informaçã
- …