49 research outputs found
Confocal Imaging at 0.3 THz with depth resolution of a painted wood artwork for the identification of buried thin metal foils
A compact confocal terahertz microscope working at 0.30 THz based on all-solid-state components is used to locate buried thin metal foils in a painted wood artwork. Metal foils are used for decoration, and their precise localization under the pictorial layer is relevant information for conservation scientists and restorers, which can neither be obtained by X-ray radiography nor by spectroscopic imaging in the infrared, as we directly show here. The confocal microscopy principle based on the spatial pinhole concept is here implemented by positioning the first focus of an ellipsoidal reflector at the phase center of horn antennas coupled to Schottky diode detector and emitter mounted in rectangular waveguide blocks, together with an optical beamsplitter. The second focus of the reflector is mechanically scanned inside the sample in three dimensions. The predictions of diffraction theory for a confocal microscope at an imaging wavelength of 1.00 mm with numerical aperture of 0.53 are verified experimentally (1.2 and 2.8 mm for the lateral and the axial resolution, respectively). These values of resolution allow a precise determination of the position of buried metal foils in an ancient piece of art hence making restoration interventions possible
Rapid Quantification of SARS-Cov-2 Spike Protein Enhanced with a Machine Learning Technique Integrated in a Smart and Portable Immunosensor
An IoT-WiFi smart and portable electrochemical immunosensor for the quantification of SARS-CoV-2 spike protein integrated with machine learning features was developed. The immunoenzymatic sensor is based on the immobilization of monoclonal antibodies directed to SARS-CoV-2 S1 subunit on Screen-Printed Electrodes functionalized with gold nanoparticles, the analytical protocol involving a single-step sample incubation. Immunosensor performance was assessed by validation carried out in viral transfer medium, which is commonly used for de-sorption of nasopharyngeal swabs. Remarkable specificity of the response was demonstrated by testing H1N1 Hemagglutinin from swine-origin influenza A virus and Spike Protein S1 from Middle East respiratory syndrome coronavirus. Machine learning was successfully used for data processing and analysis: different support vector machine classifiers were evaluated proving that algorithms affect the classifier accuracy. The test accuracy of the best classification model in terms of true positive/true negative sample classification was 97.3%. In addition, ML algorithm can be easily integrated into the developed cloud-based portable Wi-Fi device. Finally, the immunosensor was successfully tested using a third generation replicating incompetent lentiviral vector pseudotyped with SARS-CoV-2 spike glycoprotein, thus proving the applicability of the immunosensor to whole virus detection
Exome Sequencing in 200 Intellectual Disability/Autistic Patients: New Candidates and Atypical Presentations
Intellectual disability (ID) and autism spectrum disorder (ASD) belong to neurodevelopmental disorders and occur in ~1% of the general population. Due to disease heterogeneity, identifying the etiology of ID and ASD remains challenging. Exome sequencing (ES) offers the opportunity to rapidly identify variants associated with these two entities that often co-exist. Here, we performed ES in a cohort of 200 patients: 84 with isolated ID and 116 with ID and ASD. We identified 41 pathogenic variants with a detection rate of 22% (43/200): 39% in ID patients (33/84) and 9% in ID/ASD patients (10/116). Most of the causative genes are genes responsible for well-established genetic syndromes that have not been recognized for atypical phenotypic presentations. Two genes emerged as new candidates: CACNA2D1 and GPR14. In conclusion, this study reinforces the importance of ES in the diagnosis of ID/ASD and underlines that "reverse phenotyping" is fundamental to enlarge the phenotypic spectra associated with specific genes
Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males
Background: While SARS-CoV-2 similarly infects men and women, COVID-19 outcome is less favorable in men. Variability in COVID-19 severity may be explained by differences in the host genome. Methods: We compared poly-amino acids variability from WES data in severely affected COVID-19 patients versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects. Findings: Shorter polyQ alleles (â€22) in the androgen receptor (AR) conferred protection against severe outcome in COVID-19 in the first tested cohort (both males and females) of 638 Italian subjects. The association between long polyQ alleles (â„23) and severe clinical outcome (p = 0.024) was also validated in an independent cohort of Spanish men <60 years of age (p = 0.014). Testosterone was higher in subjects with AR long-polyQ, possibly indicating receptor resistance (p = 0.042 Mann-Whitney U test). Inappropriately low serum testosterone level among carriers of the long-polyQ alleles (p = 0.0004 Mann-Whitney U test) predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of testosterone, patients with long-polyQ and age â„60 years had increased levels of CRP (p = 0.018, not accounting for multiple testing). Interpretation: We identify the first genetic polymorphism that appears to predispose some men to develop more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testosterone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels for the clinical outcome. These results may contribute to designing reliable clinical and public health measures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long AR polyQ repeats. Funding: MIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and "Bando Ricerca COVID-19 Toscana" project to Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from Intesa San Paolo
Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19
Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage
A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death
: The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 Ă 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 Ă 10-8). A total of 113 variants were associated with survival at P-value < 1.0 Ă 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways
An explainable model of host genetic interactions linked to COVID-19 severity
We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients
Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an âend-onâ manner. uSTA-guided modeling and a high-resolution cryoâelectron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis
The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor