16 research outputs found

    Cold-Water Corals and Anthropogenic Impacts in La Fonera Submarine Canyon Head, Northwestern Mediterranean Sea

    Get PDF
    We assess the occurrence and extent of cold-water coral (CWC) species Madrepora oculata and Dendrophyllia cornigera, as well as gorgonian red coral Corallium rubrum, in La Fonera canyon head (Northwestern Mediterranean Sea), as well as human impacts taking place in their habitats. Occurrence is assessed based on Remotely Operated Vehicle (ROV) video imaging. Terrain classification techniques are applied to high-resolution swath bathymetric data to obtain semi-automatic interpretative maps to identify the relationship between coral distribution patterns and canyon environments. A total of 21 ROV immersions were carried out in different canyon environments at depths ranging between 79 and 401 m. Large, healthy colonies of M. oculata occur on abrupt, protected, often overhanging, rocky sections of the canyon walls, especially in Illa Negra branch. D. cornigera is sparser and evenly distributed at depth, on relatively low sloping areas, in rocky but also partially sedimented areas. C. rubrum is most frequent between 100 and 160 m on highly sloping rocky areas. The probable extent of CWC habitats is quantified by applying a maximum entropy model to predict habitat suitability: 0.36 km2 yield M. oculata occurrence probabilities over 70%. Similar predictive models have been produced for D. cornigera and C. rubrum. All ROV transects document either the presence of litter on the seafloor or pervasive trawling marks. Nets and longlines are imaged entangled on coral colonies. Coral rubble is observed at the foot of impacted colonies. Some colonies are partially covered by sediment that could be the result of the resuspension generated by bottom trawling on neighbouring fishing grounds, which has been demonstrated to be responsible of daily increases in sediment fluxes within the canyon. The characteristics of the CWC community in La Fonera canyon are indicative that it withstands high environmental stress of both natural and human origin

    Limited genetic connectivity between gorgonian morphotypes along a depth gradient

    Get PDF
    Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of con- nectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and com- plexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony mor- phology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30-40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations

    Reproduction, energy storage and metabolic requirements in a mesophotic population at the gorgonian Paramuricea macrospina

    Get PDF
    This study examined the sexual reproductive cycle, energy storage and metabolic requirements of a Mediterranean gorgonian in a mesophotic ecosystem (~70 m depth). Paramuricea macrospina resulted to be a gonochoric internal brooding species with a 1:1 population sex ratio. Oogenesis lasted ~12-14 months, whereas spermatogenesis was significantly shorter, only lasting 6 months. Fertilization occurred during late summer (August) and larval release occurred during autumn (September-October). The organic matter and total lipid content showed a slight seasonal variability. Stable isotopic composition remained constant throughout the year, reflecting a general stability in gorgonian food sources. Conversely, the free fatty acid composition varied seasonally, reflecting changes in P. macrospina energetic demands probably related to gametogenesis and larval brooding. The reproductive ecology and biochemical composition of P. macrospina significantly differ from shallow coastal gorgonian species, reflecting the higher environmental stability of deeper environments

    Active ecological restoration of cold-water corals: techniques, challenges, costs and future directions

    Get PDF
    Cold-water coral (CWC) habitats dwell on continental shelves, slopes, seamounts, and ridge systems around the world's oceans from 50 to 4000 m depth, providing heterogeneous habitats which support a myriad of associated fauna. These highly diverse ecosystems are threatened by human stressors such as fishing activities, gas and oil exploitation, and climate change. Since their life-history traits such as long lifespan and slow growth rates make CWCs very vulnerable to potential threats, it is a foremost challenge to explore the viability of restoration actions to enhance and speed up their recovery. In contrast to terrestrial and shallow-water marine ecosystems, ecological restoration in deep marine environments has received minimal attention. This review, by means of a systematic literature search, aims to identify CWC restoration challenges, assess the most suitable techniques to restore them, and discuss future perspectives. Outcomes from the few restoration actions performed to date on CWCs, which have lasted between 1 to 4 years, provide evidence of the feasibility of coral transplantation and artificial reef deployments. Scientific efforts should focus on testing novel and creative restoration techniques, especially to scale up to the spatial and temporal scales of impacts. There is still a general lack of knowledge about the biological, ecological and habitat characteristics of CWC species exploration of which would aid the development of effective restoration measures. To ensure the long-term viability and success of any restoration action it is essential to include holistic and long-term monitoring programs, and to ideally combine active restoration with natural spontaneous regeneration (i.e., passive restoration) strategies such as the implementation of deep-sea marine protected areas (MPAs). We conclude that a combination of passive and active restoration approaches with involvement of local society would be the best optimal option to achieve and ensure CWC restoration success

    Quatre dècades de recerca a les illes Medes

    Get PDF
    Podeu consultar l'informe complet [El fons marí de les illes Medes i el Montgrí: quatre dècades de recerca per a la conservació] a: http://hdl.handle.net/2445/33366Fa exactament 30 anys, l’agost de 1982, un de nosaltres signava la presentació (Ros, 1984a) del volum Els sistemes naturals de les illes Medes, que no veuria la llum fins dos anys després (Ros, Gili i Olivella, 1984). Fou aquell un esforç col·lectiu important, en el que participaren 54 autors, que al llarg de més de vuit-centes pàgines, 42 capítols i una vintena de làmines i mapes desplegables explicava tot el que llavors se sabia de l’entorn físic, la flora, la fauna i les comunitats, marines i terrestres, del petit arxipèlag empordanès. L’esperó del llibre havien estat uns projectes de recerca, modestos si es comparen amb els actuals, endegats per joves llicenciats, estudiants i afeccionats que al llarg de la dècada prèvia exploraren extensivament els fons de les illes, en mostrejaren les comunitats i en feren diversos estudis faunístics, florístics i comunitaris relativament complets

    Development of an autonomous aquarium system for maintaining deep corals

    No full text
    Keeping deep corals alive under optimum water temperature and quality conditions is not an easy task. It is important to achieve a balance among a high-water renewal rate, constant water temperature, flow speed, and nutrient concentrations (especially ammonium). In trying to find a 'meeting point' among all of these factors, the ZAE (Experimental Aquaria Area) of the Instituto de Ciencias del Mar (CSIC) in Barcelona developed an aquarium system that maintains constant temperature conditions in an open water circuit for five deep coral species being kept for HERMES project experimental purposes (Figure 1). The new system operates with a temperature variation of ± 0.2°C, allowing culture conditions similar to those in the field [...

    A general approach to the in situ energy butget of Eudendrium racemosum (Cnidaria, Hydrozoa) in the Western Mediterranean

    No full text
    An in situ energy budget of the hydropolyp Eudendrium racemosum (Cavolini, 1785) is presented. Ingestion and respiration rates and ammonium excretion were studied over two 24 h cycles, with two-hour sample intervals. The species ingested as much as 25.9% of its own biomass per day (minimum rate). Respiration was 1.62 ml O2 g-1 d w h-1 while excretion was 13.6 mM NH4 g-1dw h-1. We estimated that the species increased its biomass at a rate of 9.6% per day (Growth + Reproduction). This value is higher than those previously reported for other cnidarians. We can assume that the capacity of E. racemosum to survive - albeit for a limited period of the year - in the highly-competitive shallow-water communities is based on its high growth rate

    Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact

    No full text
    The occurrence and density of 3 cold-water coral (CWC) species (Madrepora oculata, Lophelia pertusa and Dendrophyllia cornigera) were investigated in the Cap de Creus canyon (north- western Mediterranean) by conducting and analysing 22 video survey transects. Species distribution patterns were also investigated at 3 spatial extents (km, 100s of m and m) across 3 of the transects using spatial statistics. Additionally, the locations of snagged benthic long-line fishing gear were logged across these 3 transects. Video surveys were carried out by both remotely operated vehicles (ROVs) and the JAGO manned submersible. CWCs were present in 15 of the 22 survey transects, pre- dominantly those covering areas with hard substrate (boulders or hardrock outcrops). M. oculata was the most abundant CWC species in the survey transects, whereas L. pertusa and D. cornigera were much more sparsely distributed, with only isolated colonies observed in the majority of transects. M. oculata showed a significant contagious distribution pattern across the analysed transects, with sev- eral scales of spatial pattern and patch size being detected, whereas L. pertusa and D. cornigera were not found in sufficient numbers to apply spatial statistics. Different covariance patterns were found across the transects between snagged fishing gear and the presence of M. oculata. Further investi- gation of this relationship and the level of hazard posed by long-line fishing to M. oculata colonies is required prior to development of a protective management strategy

    The population dynamics of Halecium petrosum and Halecium pusillum (Hydrozoa, Cnidaria), epiphytes of Halimeda tuna in the nortwestern Mediterranean

    No full text
    Halecium petrosum and Halecium pusillum on the alga Halimeda tuna from Tossa de Mar, northeastern Spain, were studied. Asexual reproduction of H. petrosum, by stolonisation, occurred throughout the year except for July and August. Asexual reproduction of H. pusillum, by planktonic propagules, occurred throughout the year. Sexual reproduction was limited to the autumn in H. petrosum and spring in H. pusillum. The growth rates of colonies of both species were rapid but declined with increased size. Mean colony size over two consecutive two week periods increased approximately five-fold and three-fold for H. petrosum, and six-fold and four-fold for H. pusillum. Mortality was estimated to be high for both species, especially in summer. The maximum life span of colonies (ramets) of both species was estimated to be only eight weeks. Consequently most colonies do not reproduce sexually. The absence of reproduction of H. petrosum in summer, when the turnover of algal thalli was greatest, probably contributed to the summer decline in its abundance. In both species the genet (clone) survives for unknown, possibly very long, periods by asexual reproduction which facilites colonisation of other substrata

    Cold-Water Corals and Anthropogenic Impacts in La Fonera Submarine Canyon Head, Northwestern Mediterranean Sea

    No full text
    We assess the occurrence and extent of cold-water coral (CWC) species Madrepora oculata and Dendrophyllia cornigera, as well as gorgonian red coral Corallium rubrum, in La Fonera canyon head (Northwestern Mediterranean Sea), as well as human impacts taking place in their habitats. Occurrence is assessed based on Remotely Operated Vehicle (ROV) video imaging. Terrain classification techniques are applied to high-resolution swath bathymetric data to obtain semi-automatic interpretative maps to identify the relationship between coral distribution patterns and canyon environments. A total of 21 ROV immersions were carried out in different canyon environments at depths ranging between 79 and 401 m. Large, healthy colonies of M. oculata occur on abrupt, protected, often overhanging, rocky sections of the canyon walls, especially in Illa Negra branch. D. cornigera is sparser and evenly distributed at depth, on relatively low sloping areas, in rocky but also partially sedimented areas. C. rubrum is most frequent between 100 and 160 m on highly sloping rocky areas. The probable extent of CWC habitats is quantified by applying a maximum entropy model to predict habitat suitability: 0.36 km2 yield M. oculata occurrence probabilities over 70%. Similar predictive models have been produced for D. cornigera and C. rubrum. All ROV transects document either the presence of litter on the seafloor or pervasive trawling marks. Nets and longlines are imaged entangled on coral colonies. Coral rubble is observed at the foot of impacted colonies. Some colonies are partially covered by sediment that could be the result of the resuspension generated by bottom trawling on neighbouring fishing grounds, which has been demonstrated to be responsible of daily increases in sediment fluxes within the canyon. The characteristics of the CWC community in La Fonera canyon are indicative that it withstands high environmental stress of both natural and human origin
    corecore