6,559 research outputs found

    A Practical Guide to Selecting Models for Exploration, Inference, and Prediction in Ecology

    Get PDF
    Selecting among competing statistical models is a core challenge in science. However, the many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing. We contend that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis. We argue that there are three distinct goals for statistical modeling in ecology: data exploration, inference, and prediction. Once the modeling goal is clearly articulated, an appropriate model selection procedure is easier to identify. We review model selection approaches and highlight their strengths and weaknesses relative to each of the three modeling goals. We then present examples of modeling for exploration, inference, and prediction using a time series of butterfly population counts. These show how a model selection approach flows naturally from the modeling goal, leading to different models selected for different purposes, even with exactly the same data set. This review illustrates best practices for ecologists and should serve as a reminder that statistical recipes cannot substitute for critical thinking or for the use of independent data to test hypotheses and validate predictions

    Radiation reaction on charged particles in three-dimensional motion in classical and quantum electrodynamics

    Full text link
    We extend our previous work (see arXiv:quant-ph/0501026), which compared the predictions of quantum electrodynamics concerning radiation reaction with those of the Abraham-Lorentz-Dirac theory for a charged particle in linear motion. Specifically, we calculate the predictions for the change in position of a charged scalar particle, moving in three-dimensional space, due to the effect of radiation reaction in the one-photon-emission process in quantum electrodynamics. The scalar particle is assumed to be accelerated for a finite period of time by a three-dimensional electromagnetic potential dependent only on one of the spacetime coordinates. We perform this calculation in the 0\hbar\to 0 limit and show that the change in position agrees with that obtained in classical electrodynamics with the Lorentz-Dirac force treated as a perturbation. We also show for a time-dependent but space-independent electromagnetic potential that the forward-scattering amplitude at order e2e^2 does not contribute to the position change in the 0\hbar \to 0 limit after the mass renormalization is taken into account.Comment: Latex, 20page

    Disaster Preparedness and Response: A Survey of U.S. Dental Hygienists

    Get PDF
    Purpose: The purpose of this study was to assess dental hygienists’ interests, current involvement, formal education, views, comfort levels, and intentions for involvement with disaster preparedness and response. Methods: Dental hygienists (n=400) were asked to respond to a 21-item online survey. Data was analyzed using descriptive statistics, chi-square goodness-of-fit tests, and a paired-samples t-test. Common themes were identified and categorized from open-ended questions. Results: A response rate of 84% (n=334) was obtained. Most respondents (97%) reported no involvement with disaster preparedness and response; however, a majority (86%) reported interest. Of those who indicated an interest in disaster preparedness and response, 92% had intentions for becoming involved. A majority of dental hygienists (93%) had not received formal education in disaster preparedness and response; yet, 95% shared the view that dental hygienists could have a vital role in this specialty area. Although results indicated a mean difference of 9% increased comfort with activities not requiring physical contact with human remains, dental hygienists were relatively comfortable with activities requiring contact: taking photographs (76%, n=254), taking radiographs (83%, n=273), resecting the mandible (55%, n=184), cleaning skeletonized remains (67%, n=221). Conclusion: Dental hygienists view themselves as professionals who could have a vital role in disaster preparedness and response. Efforts should be made to increase dental hygiene formal education in disaster preparedness and response with needed curriculum models and competencies for best outcomes when dental hygienists are serving their communities

    Quantum Newtonian Dynamics on a Light Front

    Get PDF
    We recall the special features of quantum dynamics on a light-front (in an infinite momentum frame) in string and field theory. The reason this approach is more effective for string than for fields is stressed: the light-front dynamics for string is that of a true Newtonian many particle system, since a string bit has a fixed Newtonian mass. In contrast, each particle of a field theory has a variable Newtonian mass P^+, so the Newtonian analogy actually requires an infinite number of species of elementary Newtonian particles. This complication substantially weakens the value of the Newtonian analogy in applying light-front dynamics to nonperturbative problems. Motivated by the fact that conventional field theories can be obtained as infinite tension limits of string theories, we propose a way to recast field theory as a standard Newtonian system. We devise and analyze some simple quantum mechanical systems that display the essence of the proposal, and we discuss prospects for applying these ideas to large N_c QCD.Comment: 13 pages, 3 figures, LaTex, psfig, references added, APS copyrigh

    More On The Connection Between Planar Field Theory And String Theory

    Get PDF
    We continue work on the connection between world sheet representation of the planar phi^3 theory and string formation. The present article, like the earlier work, is based on the existence of a solitonic solution on the world sheet, and on the zero mode fluctuations around this solution. The main advance made in this paper is the removal of the cutoff and the transition to the continuum limit on the world sheet. The result is an action for the modes whose energies remain finite in this limit (light modes). The expansion of this action about a dense background of graphs on the world sheet leads to the formation of a string.Comment: 27 pages, 3 figure

    Accessibility of physical states and non-uniqueness of entanglement measure

    Full text link
    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility.Comment: 8 pages, 1 figure. v2: main result unchanged but presentation extensively changed. v3: figure added, minor correction

    The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies

    Get PDF
    We present the K-band luminosity-halo mass relation, LK,500M500,WLL_{K,500}-M_{500,WL}, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to M500,WL=3.5×1013MM_{500,WL} =3.5 \times 10^{13}\,M_\odot. This allows us to investigate whether the slope of the LKML_K-M relation is different for groups and clusters, as seen in other works. The clusters in our sample span a wide range in mass, M500,WL=0.3512.10×1014MM_{500,WL} =0.35-12.10 \times 10^{14}\,M_\odot, at 0<z<0.60<z<0.6. The K-band luminosity scales as log10(LK,500/1012L)βlog10(M500,WL/1014M)\log_{10}(L_{K,500}/10^{12}L_\odot) \propto \beta log_{10}(M_{500,WL}/10^{14}M_\odot) with β=0.850.27+0.35\beta = 0.85^{+0.35}_{-0.27} and an intrinsic scatter of σlnLKM=0.370.17+0.19\sigma_{lnL_K|M} =0.37^{+0.19}_{-0.17}. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the literature, we obtain a slope of 1.050.14+0.161.05^{+0.16}_{-0.14} and an intrinsic scatter of 0.140.07+0.090.14^{+0.09}_{-0.07}. The flattening in the LKML_K-M seen in previous works is not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters. However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and are ultimately accreted into more massive clusters to become either part of the BCG or one of the brighter galaxies. [Abridged]Comment: A&A, in pres
    corecore