142 research outputs found

    Development of the plasma thruster particle-in-cell simulator to complement empirical studies of a low-power cusped-field thruster

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, February 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesis.Includes bibliographical references (p. 273-285).Cusped-field plasma thrusters are an electric propulsion concept being investigated by several laboratories in the United States and Europe. This technology was implemented as a low-power prototype in 2007 to ascertain if durability and performance improvements over comparable Hall thruster designs could be provided by the distinct magnetic topologies inherent to these devices. The first device tested at low-powers was eventually designated the "diverging cusped- field thruster" (DCFT) and demonstrated performance capabilities similar to state-of-the-art Hall thrusters. The research presented herein is a continuation of these initial studies, geared toward identifying significant operational characteristics of the thruster using experiments and numerical simulations. After a review of hybrid, fluid, and particle-in-cell Hall thruster models, experimental contributions from this work are presented. Anode current waveform measurements provide the first evidence of the distinct time-dependent characteristics of the two main modes of DCFT operation. The previously named "high-current" mode exhibits oscillation amplitudes several factors larger than mean current values, while magnitudes in "low-current" mode are at least a full order smaller. Results from a long-duration test, exceeding 200 hours of high-current mode operation, demonstrate lifetime-limiting erosion rates about 50% lower than those observed in comparable Hall thrusters. Concurrently, the plasma thruster particle-in-cell (PTpic) simulator was developed by upgrading numerous aspects of a preexisting Hall thruster model. Improvements in performance and accuracy have been achieved through modifications of the particle moving and electrostatic potential solving algorithms. Data from simulations representing both modes of operation are presented. In both cases, despite being unable to predict the correct location of the main potential drop in the thruster chamber, the model successfully reproduces the hollow conical jet of fast ions in the near plume region. The influences guiding the formation of the simulated beam in low-current mode are described in detail. A module for predicting erosion rates on dielectric surfaces has also been incorporated into PTpic and applied to simulations of both DCFT operational modes. Two data sets from highcurrent mode simulations successfully reproduce elevated erosion profiles in each of the three magnetic ring-cusps present in the DCFT. Discrepancies between the simulated and experimental data do exist, however, and are once again attributable to the misplacement of the primary acceleration region of the thruster. Having successfully captured the most significant erosion profile features observed in high-current mode, a simulation of erosion in low-current mode indicates substantially reduced erosion in comparison to the more oscillatory mode. These findings further motivate the completion of low-current mode erosion measurements, and continued numerical studies of the DCFT. Additionally, PTpic has proven to be a useful simulation tool for this project, and has been developed with adaptability in mind to facilitate its application to a variety of thruster designs -- including Hall thrusters.by Stephen Robert Gildea.Ph.D

    Fully kinetic modeling of a divergent cusped-field thruster

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 63-55).A fully kinetic, particle-in-cell plasma simulation tool has been incrementally developed by members of the Massachusetts Institute of Technology Space Propulsion Laboratory. Adapting this model to simulate the performance and plasma dynamics of a divergent cusped-field thruster is discussed. Strong magnetic fields in the cusps (B0.5 T) necessitate using a time step on the order of a picosecond in order to resolve electron cyclotron trajectories. As a result, successfully completing a divergent cusped-field thruster simulation with the full magnetic field strength has yet to be accomplished. As an intermediate step, simulation results of a divergent cusped-field thruster with the magnetic field at 1/5 the actual value are presented, including performance parameters and internal plasma structure details. Evidence suggests that even at 1/5 the magnetic field strength, ions are fully magnetized within certain regions of the divergent cusped-field thruster. This has strong implications concerning the basic operating principles of the thruster because the Hall effect does not result in a net flow of current in regions where ions are fully magnetized. Further modifications that may lead to successful simulations of divergent cusped-field thrusters at full magnetic field strength are also outlined, which may allow for more detailed studies of the plasma structure and performance of the cusped-field thruster.by Stephen R. Gildea.S.M

    Impact on refractive surgery due to increasing use of personal protection equipment: Insights from EUROCOVCAT group

    Get PDF
    Since the World Health Organization declared COVID-19 to be a pandemic on 11th March 2020, changes to social and sanitary practices have included significant issues in access and management of eye care during the COVID-19 pandemic. Additionally, the fear of loss, coupled with social distancing, lockdown, economic instability, and uncertainty, have led to a significant psychosocial impact that will have to be addressed. In the current COVID-19 pandemic, personal protective equipment such as face masks or face coverings have become a daily necessity. While "mass masking" along with hand hygiene and social distancing became more widespread, new issues began to emerge - particularly in those who wore spectacles as a means of vision correction. As we began to see routine patients again after the first lockdown had been lifted, many patients visited our clinics for refractive surgery consultations with a primary motivating factor of wanting spectacle independence due to the fogging of their spectacles as a result of wearing a mask. In this article, we report on new emerging issues in eye care due to the widespread use of masks and on the new unmet need in the corneal and cataract refractive surgery fields

    The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS)

    Get PDF
    Background Survival from ovarian cancer (OC) is improved with surgery, but surgery can be complex and tumour identification, especially for borderline ovarian tumours (BOT), is challenging. The Rapid Evaporative Ionisation Mass Spectrometric (REIMS) technique reports tissue histology in real-time by analysing aerosolised tissue during electrosurgical dissection. Methods Aerosol produced during diathermy of tissues was sampled with the REIMS interface. Histological diagnosis and mass spectra featuring complex lipid species populated a reference database on which principal component, linear discriminant and leave-one-patient-out cross-validation analyses were performed. Results A total of 198 patients provided 335 tissue samples, yielding 3384 spectra. Cross-validated OC classification vs separate normal tissues was high (97·4% sensitivity, 100% specificity). BOT were readily distinguishable from OC (sensitivity 90.5%, specificity 89.7%). Validation with fresh tissue lead to excellent OC detection (100% accuracy). Histological agreement between iKnife and histopathologist was very good (kappa 0.84, P < 0.001, z = 3.3). Five predominantly phosphatidic acid (PA(36:2)) and phosphatidyl-ethanolamine (PE(34:2)) lipid species were identified as being significantly more abundant in OC compared to normal tissue or BOT (P < 0.001, q < 0.001). Conclusions The REIMS iKnife distinguishes gynaecological tissues by analysing mass-spectrometry-derived lipidomes from tissue diathermy aerosols. Rapid intra-operative gynaecological tissue diagnosis may improve surgical care when histology is unknown, leading to personalised operations tailored to the individual

    Cultural Phylogenetics of the Tupi Language Family in Lowland South America

    Get PDF
    Background: Recent advances in automated assessment of basic vocabulary lists allow the construction of linguistic phylogenies useful for tracing dynamics of human population expansions, reconstructing ancestral cultures, and modeling transition rates of cultural traits over time. Methods: Here we investigate the Tupi expansion, a widely-dispersed language family in lowland South America, with a distance-based phylogeny based on 40-word vocabulary lists from 48 languages. We coded 11 cultural traits across the diverse Tupi family including traditional warfare patterns, post-marital residence, corporate structure, community size, paternity beliefs, sibling terminology, presence of canoes, tattooing, shamanism, men’s houses, and lip plugs. Results/Discussion: The linguistic phylogeny supports a Tupi homeland in west-central Brazil with subsequent major expansions across much of lowland South America. Consistently, ancestral reconstructions of cultural traits over the linguistic phylogeny suggest that social complexity has tended to decline through time, most notably in the independent emergence of several nomadic hunter-gatherer societies. Estimated rates of cultural change across the Tupi expansion are on the order of only a few changes per 10,000 years, in accord with previous cultural phylogenetic results in other languag

    Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study

    Get PDF

    The CCP4 suite : integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world

    Forty years on: French writing on 1968 in 2008

    No full text
    The full-text of this article is not currently available in ORA, but you may be able to access the article via the publisher copy link on this record page. Citation: Gildea, R. (2009). 'Forty years on: French writing on 1968 in 2008', French History 23(1), 108-119. [The definitive publisher-authenticated version is available at http://fh.oxfordjournals.org/]
    • …
    corecore