24,618 research outputs found

    Allocating Transmission to Mitigate Market Power in Electricity Networks

    Get PDF
    We ask what conditions transmission contracts increase or mitigate market power. We show that the allocation process of transmission rights is crucial. In an efficient arbitraged uniform price auction, generators will only obtain contracts that mitigate their market power. However, if generators inherit transmission contracts or buy them in a ‘pay-as-bid’ auction, then these contracts can enhance market power. In the two-node network case, banning generators from holding transmission contracts that do not correspond to delivery of their own energy mitigates market power. Meshed networks differ in important ways as constrained links no longer isolate prices in competitive markets from market manipulation. The paper suggests ways of minimising market power considerations when designing transmission contracts.electricity, contracts, auction, network, transmission

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    Two Circular-Rotational Eigenmodes in Vortex Gyrotropic Motions in Soft Magnetic Nanodots

    Get PDF
    We found, by micromagnetic numerical and analytical calculations, that the clockwise (CW) and counterclockwise (CCW) circular-rotational motions of a magnetic vortex core in a soft magnetic circular nanodot are the elementary eigenmodes existing in the gyrotropic motion with respect to the corresponding CW and CCW circular-rotational-field eigenbasis. Any steady-state vortex gyrotropic motions driven by a linearly polarized oscillating in-plane magnetic field in the linear regime can be perfectly understood according to the superposition of the two circular eigenmodes, which show asymmetric resonance characteristics reflecting the vortex polarization. The relative magnitudes in the amplitude and phase between the CCW and CW eigenmodes determine the elongation and orientation of the orbital trajectories of the vortex core motions, respectively, which trajectories vary with the polarization and chirality of the given vortex as well as the field frequency across the resonance frequency.Comment: 30 pages, 7 figure

    Effect of Edge Roughness on Electronic Transport in Graphene Nanoribbon Channel Metal Oxide Semiconductor Field-Effect Transistors

    Full text link
    Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal oxide semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However the bandgap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve.Comment: 8 pages, 5 figure

    Anthropologists Are Talking – About The Anthropocene

    Get PDF

    Exons, introns and DNA thermodynamics

    Full text link
    The genes of eukaryotes are characterized by protein coding fragments, the exons, interrupted by introns, i.e. stretches of DNA which do not carry any useful information for the protein synthesis. We have analyzed the melting behavior of randomly selected human cDNA sequences obtained from the genomic DNA by removing all introns. A clear correspondence is observed between exons and melting domains. This finding may provide new insights in the physical mechanisms underlying the evolution of genes.Comment: 4 pages, 8 figures - Final version as published. See also Phys. Rev. Focus 15, story 1

    Making co-enrolment feasible for randomised controlled trials in paediatric intensive care.

    Get PDF
    Enrolling children into several trials could increase recruitment and lead to quicker delivery of optimal care in paediatric intensive care units (PICU). We evaluated decisions taken by clinicians and parents in PICU on co-enrolment for two large pragmatic trials: the CATCH trial (CATheters in CHildren) comparing impregnated with standard central venous catheters (CVCs) for reducing bloodstream infection in PICU and the CHIP trial comparing tight versus standard control of hyperglycaemia

    Spin distribution of nuclear levels using static path approximation with random-phase approximation

    Get PDF
    We present a thermal and quantum-mechanical treatment of nuclear rotation using the formalism of static path approximation (SPA) plus random-phase approximation (RPA). Naive perturbation theory fails because of the presence of zero-frequency modes due to dynamical symmetry breaking. Such modes lead to infrared divergences. We show that composite zero-frequency excitations are properly treated within the collective coordinate method. The resulting perturbation theory is free from infrared divergences. Without the assumption of individual random spin vectors, we derive microscopically the spin distribution of the level density. The moment of inertia is thereby related to the spin-cutoff parameter in the usual way. Explicit calculations are performed for 56^Fe; various thermal properties are discussed. In particular, we demonstrate that the increase of the moment of inertia with increasing temperature is correlated with the suppression of pairing correlations.Comment: 12 pages, 8 figures, accepted for publication in Physical Review
    corecore