26,845 research outputs found

    Twilight Intensity Variation of the Infrared Hydroxyl Airglow

    Get PDF
    The vibration rotation bands of the hydroxyl radical are the strongest features in the night airglow and are exceeded in intensity in the dayglow only by the infrared atmospheric bands of oxygen. The variation of intensity during evening twilight is discussed. Using a ground-based Fourier Transform Spectrometer (FTS), hydroxyl intensity measurements as early as 3 deg solar depression were made. Models of the twilight behavior show that this should be sufficient to provide measurement of the main portion of the twilight intensity change. The instrument was equipped with a liquid nitrogen-cooled germanium detector whose high sensitivity combined with the efficiency of the FTS technique permits spectra of the region 1.1 to 1.6 microns at high signal-to-noise to be obtained in two minutes. The use of a polarizer at the entrance aperture of the instrument reduces the intensity of scattered sunlight by a factor of at least ten for zenith observations

    Chaos in cylindrical stadium billiards via a generic nonlinear mechanism

    Full text link
    We describe conditions under which higher-dimensional billiard models in bounded, convex regions are fully chaotic, generalizing the Bunimovich stadium to dimensions above two. An example is a three-dimensional stadium bounded by a cylinder and several planes; the combination of these elements may give rise to defocusing, allowing large chaotic regions in phase space. By studying families of marginally-stable periodic orbits that populate the residual part of phase space, we identify conditions under which a nonlinear instability mechanism arises in their vicinity. For particular geometries, this mechanism rather induces stable nonlinear oscillations, including in the form of whispering-gallery modes.Comment: 4 pages, 4 figure

    Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease

    Get PDF
    Pathogens often inhabit the body asymptomatically, emerging to cause disease in response to unknown triggers. In the bladder, latent intracellular Escherichia coli reservoirs are regarded as likely origins of recurrent urinary tract infection (rUTI), a problem affecting millions of women worldwide. However, clinically plausible triggers that activate these reservoirs are unknown. Clinical studies suggest that the composition of a woman's vaginal microbiota influences her susceptibility to rUTI, but the mechanisms behind these associations are unclear. Several lines of evidence suggest that the urinary tract is routinely exposed to vaginal bacteria, including Gardnerella vaginalis, a dominant member of the vaginal microbiota in some women. Using a mouse model, we show that bladder exposure to G. vaginalis triggers E. coli egress from latent bladder reservoirs and enhances the potential for life-threatening outcomes of the resulting E. coli rUTI. Transient G. vaginalis exposures were sufficient to cause bladder epithelial apoptosis and exfoliation and interleukin-1-receptor-mediated kidney injury, which persisted after G. vaginalis clearance from the urinary tract. These results support a broader view of UTI pathogenesis in which disease can be driven by short-lived but powerful urinary tract exposures to vaginal bacteria that are themselves not "uropathogenic" in the classic sense. This "covert pathogenesis" paradigm may apply to other latent infections, (e.g., tuberculosis), or for diseases currently defined as noninfectious because routine culture fails to detect microbes of recognized significance

    Playing Quantum Physics Jeopardy with zero-energy eigenstates

    Full text link
    We describe an example of an exact, quantitative Jeopardy-type quantum mechanics problem. This problem type is based on the conditions in one-dimensional quantum systems that allow an energy eigenstate for the infinite square well to have zero curvature and zero energy when suitable Dirac delta functions are added. This condition and its solution are not often discussed in quantum mechanics texts and have interesting pedagogical consequences.Comment: 8 pages, 3 figures, requires graphicx and epsfig packages. Additional information, including individual files containing the Worksheet and a Worksheet template, are available at http://webphysics.davidson.edu/mjb/jeopardy

    Low-speed stability and control wind-tunnel investigations of effects of spanwise blowing on fighter flight characteristics at high angles of attack

    Get PDF
    The effects of spanwise blowing on two configurations representative of current fighter airplanes were investigated. The two configurations differed only in wing planform, with one incorporating a trapezoidal wing and the other a 60 delta wing. Emphasis was on determining the lateral-directional characteristics, particularly in the stall/departure angle-of-attack range; however, the effects of spanwise blowing on the longitudinal aerodynamics were also determined. The-tunnel tests included measurement of static force and forced-oscillation aerodynamic data, visualization of the airflow changes created by the spanwise blowing, and free-flight model tests. The effects of blowing rate, chordwise location of the blowing ports, asymmetric blowing, and blowing on the conventional aerodynamic control characteristics were investigated. In the angle-of-attack regions in which the spanwise blowing substantially improved the wing upper-surface flow field (i.e., provided reattachment of the flow aft of the leading-edge vortex), improvements in both static and dynamic lateral-directional stability were observed. Blowing effects on stability could be proverse or adverse depending on blowing rate, blowing port loaction, and wing planform. Free-flight model tests of the trapezoidal wing confirmed the beneficial effects of spanwise blowing measured in the static and dynamic force tests

    Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane

    Get PDF
    A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions

    Control-system techniques for improved departure/spin resistance for fighter aircraft

    Get PDF
    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability
    corecore