42 research outputs found

    A chemical biology toolbox to study protein methyltransferases and epigenetic signaling

    Get PDF
    © 2019, The Author(s). Protein methyltransferases (PMTs) comprise a major class of epigenetic regulatory enzymes with therapeutic relevance. Here we present a collection of chemical probes and associated reagents and data to elucidate the function of human and murine PMTs in cellular studies. Our collection provides inhibitors and antagonists that together modulate most of the key regulatory methylation marks on histones H3 and H4, providing an important resource for modulating cellular epigenomes. We describe a comprehensive and comparative characterization of the probe collection with respect to their potency, selectivity, and mode of inhibition. We demonstrate the utility of this collection in CD4 + T cell differentiation assays revealing the potential of individual probes to alter multiple T cell subpopulations which may have implications for T cell-mediated processes such as inflammation and immuno-oncology. In particular, we demonstrate a role for DOT1L in limiting Th1 cell differentiation and maintaining lineage integrity. This chemical probe collection and associated data form a resource for the study of methylation-mediated signaling in epigenetics, inflammation and beyond

    Psycho-social factors associated with mental resilience in the Corona lockdown

    Get PDF
    The SARS-CoV-2 pandemic is not only a threat to physical health but is also having severe impacts on mental health. Although increases in stress-related symptomatology and other adverse psycho-social outcomes, as well as their most important risk factors have been described, hardly anything is known about potential protective factors. Resilience refers to the maintenance of mental health despite adversity. To gain mechanistic insights about the relationship between described psycho-social resilience factors and resilience specifically in the current crisis, we assessed resilience factors, exposure to Corona crisis-specific and general stressors, as well as internalizing symptoms in a cross-sectional online survey conducted in 24 languages during the most intense phase of the lockdown in Europe (22 March to 19 April) in a convenience sample of N = 15,970 adults. Resilience, as an outcome, was conceptualized as good mental health despite stressor exposure and measured as the inverse residual between actual and predicted symptom total score. Preregistered hypotheses (osf.io/r6btn) were tested with multiple regression models and mediation analyses. Results confirmed our primary hypothesis that positive appraisal style (PAS) is positively associated with resilience (p < 0.0001). The resilience factor PAS also partly mediated the positive association between perceived social support and resilience, and its association with resilience was in turn partly mediated by the ability to easily recover from stress (both p < 0.0001). In comparison with other resilience factors, good stress response recovery and positive appraisal specifically of the consequences of the Corona crisis were the strongest factors. Preregistered exploratory subgroup analyses (osf.io/thka9) showed that all tested resilience factors generalize across major socio-demographic categories. This research identifies modifiable protective factors that can be targeted by public mental health efforts in this and in future pandemics

    Principles and mechanisms of non-genetic resistance in cancer

    Get PDF
    As well as undergoing genetic evolution, cancer cells can alter their epigenetic state to adapt and resist treatment. This non-genetic evolution is emerging as a major component of cancer resistance. Only now are we beginning to acquire the necessary data and tools to establish some of the underlying principles and mechanisms that define when, why and how non-genetic resistance occurs. Preliminary studies suggest that it can exist in a number of forms, including drug persistence, unstable non-genetic resistance and, most intriguingly, stable non-genetic resistance. Exactly how they each arise remains unclear; however, epigenetic heterogeneity and plasticity appear to be important variables. In this review, we provide an overview of these different forms of non-genetic resistance, before exploring how epigenetic heterogeneity and plasticity influence their emergence. We highlight the distinction between non-genetic Darwinian selection and Lamarckian induction and discuss how each is capable of generating resistance. Finally, we discuss the potential interaction between genetic and non-genetic adaptation and propose the idea of 'the path of most resistance', which outlines the variables that dictate whether cancers adapt through genetic and/or epigenetic means. Through these discussions, we hope to provide a conceptual framework that focuses future studies, whose insights might help prevent or overcome non-genetic resistance

    PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity

    No full text
    The proto-oncogene c-Jun is a component of activator protein-1 (AP-1) transcription factor complexes that regulates processes essential for embryonic development, tissue homeostasis and malignant transformation. Induction of gene expression by c-Jun involves stimulation of its transactivation ability and upregulation of DNA binding capacity. While it is well established that the former requires JNK-mediated phosphorylation of S63/S73, the mechanism(s) through which binding of c-Jun to its endogenous target genes is regulated remains poorly characterized. Here we show that interaction of c-Jun with chromatin is positively regulated by protein phosphatase 2A (PP2A) complexes targeted to c-Jun by the PR55α regulatory subunit. PR55α-PP2A specifically dephosphorylates T239 of c-Jun, promoting its binding to genes regulating tumour cell migration and invasion. PR55α-PP2A also enhanced transcription of these genes, without affecting phosphorylation of c-Jun on S63. These findings suggest a critical role for interplay between JNK and PP2A pathways determining the functional activity of c-Jun/AP-1 in tumour cells

    An Erg-driven transcriptional program controls B cell lymphopoiesis.

    Get PDF
    B lymphoid development is initiated by the differentiation of hematopoietic stem cells into lineage committed progenitors, ultimately generating mature B cells. This highly regulated process generates clonal immunological diversity via recombination of immunoglobulin V, D and J gene segments. While several transcription factors that control B cell development and V(D)J recombination have been defined, how these processes are initiated and coordinated into a precise regulatory network remains poorly understood. Here, we show that the transcription factor ETS Related Gene (Erg) is essential for early B lymphoid differentiation. Erg initiates a transcriptional network involving the B cell lineage defining genes, Ebf1 and Pax5, which directly promotes expression of key genes involved in V(D)J recombination and formation of the B cell receptor. Complementation of Erg deficiency with a productively rearranged immunoglobulin gene rescued B lineage development, demonstrating that Erg is an essential and stage-specific regulator of the gene regulatory network controlling B lymphopoiesis

    A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells

    No full text
    Fos-related antigen-1 (Fra-1) is a member of the Activator Protein-1 (AP-1) transcription factor superfamily that is overexpressed in a variety of cancers, including colon, breast, lung, bladder and brain. High Fra-1 levels are associated with enhanced cell proliferation, survival, migration and invasion. Despite its frequent overexpression, the molecular mechanisms that regulate the accumulation of Fra-1 proteins in tumour cells are not well understood. Here, we show that turnover of Fra-1, which does not require ubiquitylation, is cooperatively regulated by two distinct mechanisms - association with the 19S proteasomal subunit, TBP-1, and by a C-terminal degron, which acts independently of TBP-1, but is regulated by RAS-ERK (extracellular signal-regulated kinase) signalling. TBP-1 depletion stabilized Fra-1 and further increased its levels in tumour cells expressing RAS-ERK pathway oncogenes. These effects correlated with increased AP-1 transcriptional activity. We suggest that during Fra-1 degradation, association with TBP-1 provides a mechanism for ubiquitin-independent proteasomal recognition, while the C terminus of the protein regulates its subsequent proteolytic processing. © 2012 Macmillan Publishers Limited All rights reserved

    PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity

    No full text
    The proto-oncogene c-Jun is a component of activator protein-1 (AP-1) transcription factor complexes that regulates processes essential for embryonic development, tissue homeostasis and malignant transformation. Induction of gene expression by c-Jun involves stimulation of its transactivation ability and upregulation of DNA binding capacity. While it is well established that the former requires JNK-mediated phosphorylation of S63/S73, the mechanism(s) through which binding of c-Jun to its endogenous target genes is regulated remains poorly characterized. Here we show that interaction of c-Jun with chromatin is positively regulated by protein phosphatase 2A (PP2A) complexes targeted to c-Jun by the PR55α regulatory subunit. PR55α-PP2A specifically dephosphorylates T239 of c-Jun, promoting its binding to genes regulating tumour cell migration and invasion. PR55α-PP2A also enhanced transcription of these genes, without affecting phosphorylation of c-Jun on S63. These findings suggest a critical role for interplay between JNK and PP2A pathways determining the functional activity of c-Jun/AP-1 in tumour cells
    corecore