26 research outputs found

    Selective inhibitors of the PSEN1–gamma-secretase complex

    Get PDF
    Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer’s disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1–APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future

    Selective inhibitors of the PSEN1-gamma-secretase complex

    Get PDF
    Clinical development of Y-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer’s disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific Y-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1–APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different Y-secretase complexes might provide safer drugs in the future.The work was supported by an AIO-project (no. HBC.2016.0884). This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. ERC-834682 CELLPHASE_AD). This work was supported by the Flanders Institute for Biotechnology (VIB vzw), a Methusalem grant from KU Leuven and the Flemish Government, the Fonds voor Wetenschappelijk Onderzoek, KU Leuven, The Queen Elisabeth Medical Foundation for Neurosciences, the Opening the Future campaign of the Leuven Universitair Fonds, the Belgian Alzheimer Research Foundation (SAO-FRA), and the Alzheimer’s Association USA.Peer ReviewedPostprint (published version

    -Secretase Modulators: Can We Combine Potency with Safety?

    Get PDF
    -Secretase modulation has been proposed as a potential disease modifying anti-Alzheimer’s approach. -Secretase modulators (GSMs) cause a product shift from the longer amyloid-beta (Aβ) peptide isoforms to shorter, more soluble, and less amyloidogenic isoforms, without inhibiting APP or Notch proteolytic processing. As such, modulating -secretase may avoid some of the adverse effects observed with -secretase inhibitors. Since the termination of the GSM tarenfurbil in 2008 due to negative phase III trial results, a considerable progress has been made towards more potent and better brain penetrable compounds. However, an analysis of their lipophilic efficiency indices indicates that their increased potency can be largely attributed to their increased lipophilicity. The need for early and chronic dosing with GSMs will require high-safety margins. This will be a challenge to achieve with the current, highly lipophilic GSMs. We will demonstrate that by focusing on the drug-like properties of GSMs, a combination of high in vitro potency and reduced lipophilicity can be achieved and does result in better tolerated compounds. The next hurdle will be to translate this knowledge into GSMs which are highly efficacious and safe in vivo

    Discovery of brain permeable 2-Azabicyclo[2.2.2]octane sulfonamides as a novel class of presenilin-1 selective γ-secretase inhibitors

    No full text
    This paper describes the rational design, synthesis, structure-activity relationship (SAR), and biological profile of presenilin-1 (PSEN-1) complex selective γ-secretase inhibitors, assessed for selectivity using a unique set of four γ-secretase subtype complexes. A set of known PSEN-1 selective γ-Secretase inhibitors (GSIs) was analyzed to understand the pharmacophoric features required for selective inhibition. Conformational modeling suggests that a characteristic 'U' shape orientation between aromatic sulfone/sulfonamide and aryl ring is crucial for PSEN-1 selectivity and potency. Using these insights, a series of brain-penetrant 2-azabicyclo[2,2,2]octane sulfonamides was devised and synthesized as a new class of PSEN-1 selective inhibitors. Compounds 13c and 13k displayed high potency towards PSEN1-APH1B complex but moderate selectivity towards PSEN2 complexes. However, compound (+)-13b displayed low nanomolar potency towards the PSEN1-APH1B complex, little (∼4-fold) selectivity towards PSEN1-APH1A, and high selectivity (>350-fold) versus PSEN2 complexes. Excellent brain penetration, no significant CYP inhibition, or cardiotoxicity, good solubility, and permeability make (+)-13b an excellent candidate for further lead optimization

    Presenilin-1 but not amyloid precursor protein mutations present in Mouse models of alzheimer's disease attenuate the response of cultured Cells to gamma-secretase modulators regardless of their potency and Structure

    No full text
    P>gamma-Secretase modulators (GSMs) inhibit the generation of amyloidogenic A beta 42 peptides and are promising agents for treatment or prevention of Alzheimer's disease (AD). Recently, a second generation of GSMs with favorable pharmacological properties has emerged, but preclinical studies to assess their efficacy in vivo are lacking. Such studies rely on transgenic mouse models that express amyloid precursor protein (APP) and presenilin (PSEN) mutations associated with early-onset familial AD. Previously, we have shown that certain PSEN1 mutations attenuated the response of cultured cells to GSMs and potentially confound in vivo studies in AD mouse models. However, different combinations of familial AD mutations might have synergistic or opposing effects, and we have now systematically determined the response of APP and PSEN1 mutations present in current AD models. Using a potent acidic GSM, we found that APP mutations, either single mutations or in combination, did not affect the potency of GSMs. In contrast, all PSEN1 mutations that have been used to accelerate pathological changes in AD models strongly attenuated the A beta 42-lowering activity of GSMs with two exceptions (M146L, A246E). Similar results were obtained with potent non-acidic GSMs indicating that the attenuating effect of PSEN1 mutations cannot simply be overcome by increased potency or structural changes. Notably, two non-acidic compounds fully compensated the attenuating effect of the PSEN1-G384A mutation. Taken together, our findings indicate that most AD models with rapid pathology and advanced phenotypes are unsuitable for preclinical GSM studies. However, we also provide evidence that additional compound screens could discover GSMs that are able to break the attenuating effects of PSEN mutations

    Qualitative changes in human γ-secretase underlie familial Alzheimer's disease

    No full text
    Presenilin (PSEN) pathogenic mutations cause familial Alzheimer's disease (AD [FAD]) in an autosomal-dominant manner. The extent to which the healthy and diseased alleles influence each other to cause neurodegeneration remains unclear. In this study, we assessed γ-secretase activity in brain samples from 15 nondemented subjects, 22 FAD patients harboring nine different mutations in PSEN1, and 11 sporadic AD (SAD) patients. FAD and control brain samples had similar overall γ-secretase activity levels, and therefore, loss of overall (endopeptidase) γ-secretase function cannot be an essential part of the pathogenic mechanism. In contrast, impaired carboxypeptidase-like activity (γ-secretase dysfunction) is a constant feature in all FAD brains. Significantly, we demonstrate that pharmacological activation of the carboxypeptidase-like γ-secretase activity with γ-secretase modulators alleviates the mutant PSEN pathogenic effects. Most SAD cases display normal endo- and carboxypeptidase-like γ-secretase activities. However and interestingly, a few SAD patient samples display γ-secretase dysfunction, suggesting that γ-secretase may play a role in some SAD cases. In conclusion, our study highlights qualitative shifts in amyloid-β (Aβ) profiles as the common denominator in FAD and supports a model in which the healthy allele contributes with normal Aβ products and the diseased allele generates longer aggregation-prone peptides that act as seeds inducing toxic amyloid conformations.status: publishe

    Increasing Brain Protein O-GlcNAc-ylation Mitigates Breathing Defects and Mortality of Tau.P301L Mice

    Get PDF
    <div><p>The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.</p> </div
    corecore