17 research outputs found

    Novel system for real-time integration of 3-D echocardiography and fluoroscopy for image-guided cardiac interventions: Preclinical validation and clinical feasibility evaluation

    Get PDF
    © 2015 IEEE. Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures

    Optics of tissue and in vivo fluorescence of hematoporphyrin-derivative (HpD)

    Get PDF

    Image-Based Automatic Ablation Point Tagging System with Motion Correction for Cardiac Ablation Procedures

    No full text
    X-ray fluoroscopically guided cardiac ablation procedures are commonly carried out for the treatment of cardiac arrhythmias, such as atrial fibrillation (AF). X-ray images have poor soft tissue contrast and, for this reason, overlay of a 3D roadmap derived from pre-procedural volumetric image data can be used to add anatomical information. It is a requirement to determine and record the 3D positions of the ablation catheter tip in the 3D road map during AF ablation. This feature can be used as a guidance and post-procedure analysis tool. The 3D positions of the catheter tip can be calculated from biplane X-ray images and mapped to the 3D roadmap. However, the registration between the 3D roadmap and the 2D X-ray data can be compromised by patient respiratory and cardiac motions. As the coronary sinus (CS) catheter is not routinely altered during the procedure, tracking the CS catheter in real-time can be used as means of motion correction to improve the accuracy of registration between live X-ray images and a 3D roadmap. To achieve a fast and automatic ablation point tagging system from biplane images, we developed a novel tracking method for real-time simultaneous detection of the ablation catheter and the CS catheter from fluoroscopic X-ray images. We tested our tracking method on 1083 fluoroscopy frames from 16 patients and achieved a success rate of 97.5% and an average 2D tracking error of 0.5 mm ± 0.3 mm. In order to achieve tagging using a mono-plane X-ray image system, we proposed a novel motion gating method to select a pair of images from two short image sequences acquired from two different views. Both respiratory and cardiac motion phases are matched by selecting the pair of images with the minimum reconstruction error of the CS catheter electrodes. Finally, the 3D position of the ablation catheter tip was calculated using the epipolar constraint from the multiview images. We validated our automatic ablation point tagging strategy by computing the reconstruction error of the ablation catheter tip and achieved an error of 1.1 mm ± 0.5 mm

    Modified Fiber Tips for Laser Angioplasty: Mechanisms of Action

    No full text
    Laser angioplasty with modified fiber tips has become a common procedure for the recanalization of totally occluded peripheral arteries. We evaluated the contribution of optical, thermal, and mechanical effects to the mechanism of recanalization of various probes, theoretically and experimentally. Temperature behavior and tissue penetration were measured in relation to axial force exerted by metal laser probes, and optical contact probes coupled to continuous‐wave and pulsed Nd:YAG lasers. Modified fiber tips only penetrated tissue when the contact surface of the probe exceeded a temperature threshold of about 225°C in the fatty tissue model used. Metal laser probes had to be insulated from a liquid environment to attain this temperature. Optical probes needed to have an absorbing layer of carbonized tissue particles to attain this temperature. Tissue penetration by modified fiber tips was force dependent, especially with optical probes. Since the diameter of the probe was larger than the ablative laser beam, the atraumatic probe had to distend soft tissues mechanically. Because the metal laser probes delivered their energy in all directions, undesired heating in the radial direction has to be reduced by motion. The recanalization mechanism of modified fiber tips will depend on the properties of the obstruction. Sometimes the probes will recanalize the obstruction without the use of laser energy (Dotter effect). Moderate heating of the tissue by either direct absorption of light, or by heat conduction from the heated surface of the probe, may help to remodel the obstruction. Tissue temperatures around 100°C will vaporize the water compound, and temperatures higher than 225°C will ablate the solid compounds of the tissue creating a channel. The present unsteerable probes will not penetrate heavily calcified obstructions. Calcific deposits may deflect the probe into the wall with the risk of perforation

    Comparing Image-Based Respiratory Motion Correction Methods for Anatomical Roadmap Guided Cardiac Electrophysiology Procedures

    No full text
    X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3D roadmaps derived from pre-procedural volumetric data can be used to add anatomical information. However, the registration between the 3D roadmap and the 2D X-ray data can be compromised by patient respiratory motion. Three methods were evaluated to correct for respiratory motion using features in the X-ray image data. The first method is based on tracking either the diaphragm or the heart border using the image intensity in a region of interest. The second method detects the tracheal bifurcation using the generalized Hough transform and a 3D model derived from pre-operative image data. The third method is based on tracking the coronary sinus (CS) catheter. All three methods were applied to X-ray images from 18 patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. The 2D target registration errors (TRE) at the pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm ± 0.8 mm was achieved for the diaphragm tracking; 1.7 mm ± 0.9 mm for heart border tracking; 1.9 mm ± 1.0 mm for trachea tracking and 1.8 mm ± 0.9 mm for CS catheter tracking. We also present a comparison between our techniques with other published image-based motion correction strategies

    Cardiac unfold: A novel technique for image-guided cardiac catheterization procedures

    No full text
    X-ray fluoroscopically-guided cardiac catheterization procedures are commonly carried out for the treatment of cardiac arrhythmias, such as atrial fibrillation (AF) and cardiac resynchronization therapy (CRT). X-ray images have poor soft tissue contrast and, for this reason, overlay of a 3D roadmap derived from pre-procedure volumetric image data can be used to add anatomical information. However, current overlay technologies have the limitation that 3D information is displayed on a 2D screen. Therefore, it is not possible for the cardiologist to appreciate the true positional relationship between anatomical/functional data and the position of the interventional devices. We prose a navigation methodology, called cardiac unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device tracking. This would allow more intuitive navigation since the entire 3D scene is displayed simultaneously on a 2D plot. A real-time unfold guidance platform for CRT was developed, where navigation is performed using the standard AHA 16-segment bull’s-eye plot for the left ventricle (LV). The accuracy of the unfold navigation was assessed in 13 patient data sets by computing the registration errors of the LV pacing lead electrodes and was found to be 2.2 ± 0.9 mm. An unfold method was also developed for the left atrium (LA) using trimmed B-spline surfaces. The method was applied to 5 patient data sets and its utility was demonstrated for displaying information from delayed enhancement MRI of patients that had undergone radio-frequency ablation

    Clinical evaluation of respiratory motion compensation for anatomical roadmap guided cardiac electrophysiology procedures

    No full text
    X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3-D roadmaps derived from preprocedural volumetric data can be used to add anatomical information. However, the registration between the 3-D roadmap and the 2-D X-ray image can be compromised by patient respiratory motion. Three methods were designed and evaluated to correct for respiratory motion using features in the 2-D X-ray images. The first method is based on tracking either the diaphragm or the heart border using the image intensity in a region of interest. The second method detects the tracheal bifurcation using the generalized Hough transform and a 3-D model derived from 3-D preoperative volumetric data. The third method is based on tracking the coronary sinus (CS) catheter. This method uses blob detection to find all possible catheter electrodes in the X-ray image. A cost function is applied to select one CS catheter from all catheter-like objects. All three methods were applied to X-ray images from 18 patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. The 2-D target registration errors (TRE) at the pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm 0.8 mm was achieved for the diaphragm tracking; 1.7 mm 0.9 mm for heart border tracking, 1.9 mm 1.0 mm for trachea tracking, and 1.8 mm 0.9 mm for CS catheter tracking. We present a comprehensive comparison between the techniques in terms of robustness, as computed by tracking errors, and accuracy, as computed by TRE using two independent approaches. © 2011 IEEE

    An integrated platform for image-guided cardiac resynchronization therapy

    No full text
    Cardiac resynchronization therapy (CRT) is an effective procedure for patients with heart failure but 30% of patients do not respond. This may be due to sub-optimal placement of the left ventricular (LV) lead. It is hypothesized that the use of cardiac anatomy, myocardial scar distribution and dyssynchrony information, derived from cardiac magnetic resonance imaging (MRI), may improve outcome by guiding the physician for optimal LV lead positioning. Whole heart MR data can be processed to yield detailed anatomical models including the coronary veins. Cine MR data can be used to measure the motion of the LV to determine which regions are late-activating. Finally, delayed Gadolinium enhancement imaging can be used to detect regions of scarring. This paper presents a complete platform for the guidance of CRT using pre-procedural MR data combined with live x-ray fluoroscopy. The platform was used for 21 patients undergoing CRT in a standard catheterization laboratory. The patients underwent cardiac MRI prior to their procedure. For each patient, a MRI-derived cardiac model, showing the LV lead targets, was registered to x-ray fluoroscopy using multiple views of a catheter looped in the right atrium. Registration was maintained throughout the procedure by a combination of C-arm/x-ray table tracking and respiratory motion compensation. Validation of the registration between the three-dimensional (3D) roadmap and the 2D x-ray images was performed using balloon occlusion coronary venograms. A 2D registration error of 1.2 ± 0.7mm was achieved. In addition, a novel navigation technique was developed, called Cardiac Unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device detection. This allowed more intuitive navigation as the entire 3D scene was displayed simultaneously on a 2D plot. The accuracy of the unfold navigation was assessed off-line using 13 patient data sets by computing the registration error of the LV pacing lead electrodes which was found to be 2.2 ± 0.9mm. Furthermore, the use of Unfold Navigation was demonstrated in real-time for four clinical cases. © 2012 Institute of Physics and Engineering in Medicine
    corecore