72 research outputs found

    Spread of Multidrug-Resistant Rhodococcus equi, United States

    Get PDF

    Pangenome and Phylogenomic Analysis of the Pathogenic Actinobacterium Rhodococcus equi

    Get PDF
    We report a comparative study of 29 representative genomes of the animal pathogen Rhodococcus equi. The analyses showed that R. equi is genetically homogeneous and clonal, with a large core genome accounting for ≈80% of an isolates’ gene content. An open pangenome, even distribution of accessory genes among the isolates, and absence of significant core–genome recombination, indicated that gene gain/loss is a main driver of R. equi genome evolution. Traits previously predicted to be important in R. equi physiology, virulence and niche adaptation were part of the core genome. This included the lack of a phosphoenolpyruvate:carbohydrate transport system (PTS), unique among the rhodococci except for the closely related Rhodococcus defluvii, reflecting selective PTS gene loss in the R. equi–R. defluvii sublineage. Thought to be asaccharolytic, rbsCB and glcP non-PTS sugar permease homologues were identified in the core genome and, albeit inefficiently, R. equi utilized their putative substrates, ribose and (irregularly) glucose. There was no correlation between R. equi whole-genome phylogeny and host or geographical source, with evidence of global spread of genomovars. The distribution of host-associated virulence plasmid types was consistent with the exchange of the plasmids (and corresponding host shifts) across the R. equi population, and human infection being zoonotically acquired. Phylogenomic analyses demonstrated that R. equi occupies a central position in the Rhodococcus phylogeny, not supporting the recently proposed transfer of the species to a new genus

    Development of septic polysynovitis and uveitis in foals experimentally infected with \u3ci\u3eRhodococcus equi\u3c/i\u3e

    Get PDF
    Rhodococcus equi is one of the most important causes of disease in foals. Infection is typically characterized by pyogranulomatous pneumonia although extrapulmonary infections occur occasionally. Uveitis and polysynovitis have been reported in foals naturally infected with R. equi and are thought to be the result of an immune-mediated process. However, the pathogenesis of these conditions is poorly understood. The objectives of this study were to document the occurrence of uveitis and polysynovitis after experimental infection with R. equi and to determine if these disorders are the direct result of infection at these sites. Foals between 3 and 4 weeks of age were infected intratracheally with virulent R. equi using inocula of 1×108 CFU (high inoculum; n = 16) or 1×107 CFU (low inoculum; n = 12). Foals were monitored twice daily and necropsy was performed 14 days post-infection. Aqueous humor and synovial fluid were collected aseptically and the percentage of affected lung was calculated. The mean (± SD) percentage of affected lung was significantly higher with the high inoculum (31.8 ± 14.6%) than with the low inoculum (14.4 ± 11.4%). Fourteen of 25 foals developed uveitis and 20 of 28 foals developed polysynovitis. R. equi was cultured from the aqueous humor of 11 foals and from the synovial fluid of 14 foals. The risk of development of polysynovitis and protein concentration in the aqueous humor were significantly higher in foals that received the high inoculum. These results indicate that polysynovitis and uveitis are septic complications associated with the severity of lung disease

    Pharmacokinetics of Once-Daily Amikacin in Healthy Foals and Therapeutic Drug Monitoring in Hospitalized Equine Neonates

    Get PDF
    The objectives of this study were to investigate the pharmacokinetics of once-daily amikacin in healthy neonates, to determine amikacin concentrations in hospitalized foals, and to determine the minimum inhibitory concentrations (MICs) of amikacin against gram-negative isolates from blood cultures in septic foals. Median half-life, clearance, and volume of distribution of amikacin in healthy 2- to 3-day-old foals after administration of an intravenous bolus of amikacin (25 mg/kg) were 5.07 hours (4.86-5.45 hours), 1.82 mL/min/kg (1.35-1.97 mL/min/kg), and 0.785 L/kg (0.638-0.862 L/kg), respectively. Statistically significant (P or = 3 microg/mL between the 2 groups. An initial dose at 25 mg/kg is recommended for once-daily amikacin in equine neonates

    Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi

    Get PDF
    There is currently no licensed vaccine that protects foals against Rhodococcus equi-induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective

    Equine Neonates Have Attenuated Humoral and Cell-Mediated Immune Responses to a Killed Adjuvanted Vaccine Compared to Adult Horses ▿

    No full text
    The objectives of this study were to compare relative vaccine-specific serum immunoglobulin concentrations, vaccine-specific lymphoproliferative responses, and cytokine profiles of proliferating lymphocytes between 3-day-old foals, 3-month-old foals, and adult horses after vaccination with a killed adjuvanted vaccine. Horses were vaccinated intramuscularly twice at 3-week intervals with a vaccine containing antigens from bovine viral respiratory pathogens to avoid interference from maternal antibody. Both groups of foals and adult horses responded to the vaccine with a significant increase in vaccine-specific IgGa and IgG(T) concentrations. In contrast, only adult horses and 3-month-old foals mounted significant vaccine-specific total IgG, IgGb, and IgM responses. Vaccine-specific concentrations of IgM and IgG(T) were significantly different between all groups, with the highest concentrations occurring in adult horses, followed by 3-month-old foals and, finally, 3-day-old foals. Only the adult horses mounted significant vaccine-specific lymphoproliferative responses. Baseline gamma interferon (IFN-Îł) and interleukin-4 (IL-4) concentrations were significantly lower in 3-day-old foals than in adult horses. Vaccination resulted in a significant decrease in IFN-Îł concentrations in adult horses and a significant decrease in IL-4 concentrations in 3-day-old foals. After vaccination, the ratio of IFN-Îł/IL-4 in both groups of foals was significantly higher than that in adult horses. The results of this study indicate that the humoral and lymphoproliferative immune responses to this killed adjuvanted vaccine are modest in newborn foals. Although immune responses improve with age, 3-month-old foals do not respond with the same magnitude as adult horses

    In Vitro Susceptibilities of Rhodococcus equi and Other Common Equine Pathogens to Azithromycin, Clarithromycin, and 20 Other Antimicrobials

    No full text
    The objective of this study was to determine in vitro activities of azithromycin (AZM), clarithromycin (CLR), and 20 other antimicrobial agents against Rhodococcus equi and other common equine bacterial pathogens. A total of 201 bacterial isolates from various equine clinical samples were examined. CLR was more active than AZM against R. equi, with MICs at which 90% of the isolates were inhibited of 0.12 and 1.0 Îźg/ml, respectively. Other antimicrobial agents highly active against at least 90% of R. equi isolates in vitro included rifampin, gentamicin, and imipenem. Both AZM and CLR showed good activity against beta-hemolytic streptococci and Staphylococcus spp. AZM was more active than other macrolides against Pasteurella spp. and Salmonella enterica
    • …
    corecore