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ABSTRACT 1 

Conjugation is one of the main mechanisms involved in the spread and maintenance of 2 

antibiotic resistance in bacterial populations. We recently showed that the emerging macrolide 3 

resistance in the soil-borne equine and zoonotic pathogen Rhodococcus equi is conferred by the 4 

erm(46) gene carried on the 87-kb conjugative plasmid pRErm46. Here we investigated the 5 

conjugal transferability of pRErm46 to 14 representative bacteria likely encountered by R. equi 6 

in the environmental habitat. In vitro mating experiments demonstrated conjugation to different 7 

members of the genus Rhodococcus as well as to Nocardia and Arthrobacter spp. at frequencies 8 

ranging from ~10-2 to 10-6. pRErm46 transfer was also observed in mating experiments in soil 9 

and horse manure, albeit at a low frequency and after prolonged incubation at 22-30ºC 10 

(environmental temperatures), not 37ºC. All transcojugants were able to transfer pRErm46 back 11 

to R. equi. Conjugation could not be detected with Mycobacterium and Corynebacterium spp. or 12 

several members of the more distant phylum Firmicutes such as Enterococcus, Streptococcus or 13 

Staphylococcus. Thus, pRErm46 host range appears to span several actinobacterial orders with 14 

certain host restriction within the Corynebacteriales. All bacterial species that acquired 15 

pRErm46 expressed increased macrolide resistance with no significant deleterious impact on 16 

fitness, except in the case of Rhodococcus rhodnii. Our results indicate that actinobacterial 17 

members of the environmental microbiota can both acquire and transmit the R. equi pRErm46 18 

plasmid and thus potentially contribute to the maintenance and spread of erm(46)-mediated 19 

macrolide resistance in equine farms.  20 



IMPORTANCE 21 

This study demonstrates the efficient horizontal transfer of the R. equi conjugative 22 

plasmid pRErm46, recently identified as the cause of the emerging macrolide resistance among 23 

equine isolates of this pathogen, to and from different environmental Actinobacteria including a 24 

variety of rhodocci as well as Nocardia and Arhtrobacter spp. The reported data support the 25 

notion that environmental microbiota may act as reservoirs for the endemic maintenance of 26 

antimicrobial resistance in an antibiotic pressurized farm habitat.  27 



INTRODUCTION  28 

Rhodococcus spp. are present in diverse environments owing to their unique capacity for 29 

niche adaptation [1-3]. Much of their environmental plasticity relies on extrachromosomal 30 

genetic elements of circular or linear topology that carry key niche-adaptive traits[4, 5]. While 31 

environmental Rhodococcus spp. typically harbor plasmids encoding catabolic pathways[3, 6], R. 32 

equi, the only animal pathogen of this genus, carries the pVAP virulence plasmids essential for 33 

pathogenesis and survival in host macrophages[5, 7]. Three pVAP plasmid types have been 34 

described so far, each adapted to a specific animal host: the equine-associated pVAPA, porcine-35 

associated pVAPB and ruminant-associated pVAPN[8-10]. Although R. equi can infect a variety 36 

of animal species including humans, young foals are particularly susceptible and develop a 37 

severe respiratory disease characterized by focal purulent brochopneumonia[11, 12].  38 

R. equi is a ubiquitous soil organism that becomes endemic in horse breeding farms 39 

where it causes high morbidity and mortality in foals [12, 13]. Due to the lack of an effective 40 

vaccine and the insidious nature of the initial stages of the infection, many farms rely on thoracic 41 

ultrasonographic screening followed by antibiotic treatment of foals presenting subclinical lung 42 

lesions[11]. Field studies indicate, however, that this practice may constitute an example of 43 

unjustified antibiotic misuse because many subclinically infected foals would spontaneously 44 

recover independently of antibiotic prophylaxis [14, 15]. Not surprisingly, the inception of the 45 

mass antibioprophylaxis in 2001 has resulted a few years later in the emergence of resistance to 46 

the antimicrobials used in such treatments, a combination of a macrolide and rifampin [13, 16-47 

18]. The emergence of this dual resistance is problematic because only a few antimicrobials are 48 

clinically effective to combat rhodococcal foal pneumonia and the macrolide-rifampin 49 

combination remains the mainstay of antimicrobial therapy against equine R. equi 50 



infection [19].The macrolide-rifampin resistance emerged upon horizontal transfer of a novel 51 

rRNA methylase gene, erm(46), which confers resistance to macrolides, lincosamides and 52 

streptogrnim B (MLSB) [20], to a specific R. equi strain carrying a novel chromosomal rpoB 53 

mutation (S531F), which then gave rise to a clonal population[21]. 54 

We recently reported that erm(46) is acquired and mobilized as part of a conjugative 55 

plasmid, pRErm46 [20, 21]. This macrolide resistance plasmid has so far only been identified in 56 

equine (pVAPA positive) R. equi isolates, likely as a result of the selective pressure exerted by 57 

the mass antimicrobial treatments systematically applied to control foal pneumonia in endemic 58 

farms. Whether pRErm46 can also be maintained and spread by R. equi bacteria carrying the 59 

porcine-associated (pVAPB) or ruminant-associated (pVAPN) virulence plasmid types is not 60 

known. Homology analysis of the coding sequences of pRErm46’s replicon indicated an 61 

actinobacterial origin, particularly rhodococcal, but whether pRErm46 can actually be mobilized 62 

and replicate in other Actinobacteria remains also to be determined. The purpose of this study 63 

was to explore the host range of pRErm46 and elucidate whether other members of the 64 

environmental microbiota can act as its reservoir in the absence of R. equi, thus potentially 65 

contributing to the maintenance and perpetuation of the macrolide resistance determinant in the 66 

farm habitat.  67 

 68 

RESULTS  69 

1. pRErm46 can be self-transferred to and maintained by different actinobacterial species 70 

In a first series of experiments, mating assays were carried out using macrolide-resistant 71 

strain 103+ApraR (pRErm46) as a donor and porcine clinical isolate REPB1 RmpR (pVAPB 72 

positive) and bovine isolate REPN1 RmpR (pVAPN-positive) as recipient strains (see Table 6). 73 



pRErm46 was mobilized to the R. equi porcine and bovine isolates at conjugation frequencies of 74 

~10-5 and ~10-4 respectively (Table 1). The presence of the R. equi virulence plasmids (pVAPB 75 

and pVAPN) and macrolide resistance plasmid pRErm46 was verified by PCR in the dual 76 

resistant (to erythromycin [ErmR] and rifampin [RmpR]) trasnconjugant colonies. The porcine 77 

isolate transconjugants were confirmed to still carry pVAPB in addition to the pRErm46 78 

macrolide resistance plasmid. However, none of the bovine isolates that received pRErm46 kept 79 

the pVAPN virulence plasmid. Plasmid incompatibilities are based on similarities in the origin of 80 

replication of the amplicons, whereby competition for replication factors favors plasmids which, 81 

due e.g. to smaller size (as would be the case of the 87-kb pRErm46 vs the 120-kb pVAPN), 82 

have a faster replication [22, 23]. We searched the pVAPN putative origin of replication 83 

sequence 5′-AAAACCCCCAGGTGGGGGTGGGTTTT [9] in the pRErm46 DNA sequence 84 

using Blast and we identified a 33-nt segment (5- AAAACCCCCAGCCATGCGGGGCT 85 

GAGGGTTTCT) upstream the open reading frame (ORF) PRERM_0270 (23985-24018 bp) that 86 

shared 25 of the 27 nt of pVAPN’s sequence (Figure S1). No such sequence was identified in the 87 

replicon of the pVAPA/B plasmids. 88 

We next explored the host range of pRErm46 by performing bacterial conjugation assays 89 

using the same donor and 14 representative bacterial species including six non-equi Rhodococcus 90 

spp. (Rhodococcus defluvii DSM45893, Rhodococcus fascians DSM20669, Rhodococcus 91 

rhodochrous JCM2156, Rhodococcus erythropolis JCM2892, Rhodococcus ruber JCM3205, 92 

Rhodococcus rhodnii JCM3203); five different Actinobacteria (Corynebacterium 93 

pseudotuberculosis, Mycobacterium smegmatis MKD8, Mycobacterium fortuitum and Nocardia 94 

globerula ATCC21505 from the Order Corynebacteriales, Arthrobacter paraffineus 95 

ATCC19958 from the Order Micrococcales); and three species from the more distant Phylum 96 



Firmicutes (Enterococcus faecalis ATCC29212, an equine field Streptococcus zooepidermicus 97 

subsp. equi isolate and Staphylococcus aureus ATCC29213). All Rhodococcus species 98 

successfully acquired pRErm46 at varying transfer frequencies (Table 1). Similarly, pRErm46 99 

was conjugally transferred to N. goberula and A. paraffineus at comparable ratios to 100 

Rhodococcus spp. (Table 1). In contrast, transfer of pRErm46 could not be detected to the tested 101 

mycobacteria, C. pseudotuberculosis and the non-actinobacterial species. pRErm46 102 

transconjugants were subsequently used as donors in conjugation assays with R. equi recipients. 103 

Notably, all primary recipients of pRErm46 were able to mobilize the plasmid back to macrolide 104 

susceptible R. equi at similar transfer frequencies (Table 1).  105 

The macrolide resistance phenotype of five randomly selected transconjugant colonies 106 

per recipient bacteria from the in vitro mating assays with the R. equi 103+ApraR (pRErm46) 107 

donor (see above) was evaluated by susceptibility testing using eTest strips. Minimum inhibitory 108 

concentrations (MIC) to macrolides were tested before and after acquisition of pRErm46. The 109 

MIC of recipients prior and after gaining pRErm46 were 0.5-8 µg/ml and ≥ 256 µg/ml, 110 

respectively, for all isolates. The only exception was R. fascians in which the MIC increased 111 

from 0.19-0.38 µg/ml to 8 -12 µg/ml (Table 2).  112 

 113 

2. Transfer of pRErm46 in soil and manure  114 

To assess whether pRErm46 transfer can take place in conditions approximating the 115 

equine farm habitat, bacterial mating experiments were performed in soil and horse manure. 116 

Macrolide and rifampin resistant equine clinical isolate PAM2287[21] (prototype strain of the 117 

pRErm46-harboring R. equi clone) was used as pRErm46 donor and susceptible (pRERrm46-118 

negative) avirulent R. equi 103- with an apramycin resistance aac(3)IV cassette [103-ApraR][24] 119 



as the recipient in the mating assay, enabling transconjugant selection via dual resistance to 120 

erythromycin (ErmR) and apramycin (ApraR). Three different conjugation ratios (1:1, 1:10 and 121 

10:1), and four different temperatures (4°C, 22°C, 30°C and 37°C) to mimic seasonal 122 

temperature changes, were tested. Soil and manure samples were screened for conjugation at 7, 123 

30, 90 and 180 days.  pRErm46 transfer in both soil and horse manure was sporadically observed 124 

after 30 days incubation at 22˚C and 30˚C, independently of the donor:recipient ratio (Table 3). 125 

Transconjugants were detected in all cases, although mostly in only one of the triplicate soil 126 

samples per time point and tested temperature. Calculated transfer ratios ranged from 10-6 to 10-2 127 

transconjugants/recipient bacteria. For confirmation, the presence of the ApraR cassette, erm(46) 128 

gene, pRErm46, in addition to the virulence plasmid pVAPA, was tested by PCR in up to 10 129 

(depending on transconjugant numbers) EryR and ApraR colonies. All transconjugants screened 130 

by PCR carried the the aac(3)IV (ApraR) cassette and the erm(46) (ErmR) gene, providing 131 

molecular confirmation of the transconjugant phenotype. pRErm46 was detected by PCR in all 132 

transconjugants tested except for the those isolated after 90 days at 30˚C with a 10:1 133 

donor:recipient ratio, despite these testing positive for the erm(46) gene. Interestingly, these 134 

transconjugants are those in which pVAPA acquisition had been detected in our experiments. 135 

Based on these data, optimal environmental mating conditions appear to be 22˚C-30˚C for a 136 

length of between 8 to 30 days. 137 

Under the above optimal conditions for pRErm46 environmental conjugation, we used 138 

the same assay to test the mobilization of pRErm46 from R. equi to R. erythropolis (as a 139 

representative of the Rhodococcus genus), N. globerula and A. paraffineus in soil (Table 4). The 140 

three species successfully acquired pRErm46 after 15 days. All soil samples tested contained 141 

transconjugant bacteria, with N. globerula showing the highest transfer ratio ranging from 10-1 to 142 



10-4 transconjugants/recipient bacteria. The mobilization of pRErm46 to R. erythropolis occurred 143 

at similar frequencies to those observed for R. equi in soil and ranged between 10-5 and 10-7 144 

transconjugants/recipient bacteria, while slightly lower transfer ratios were observed using A. 145 

parraffineus as recipient (10-6-10-9 transconjugants/recipient). 146 

 147 

3. pRErm46 fitness cost varies in different recipients.   148 

To gain further insight into the determinants of pRErm46 maintenance, we measured the 149 

impact of pRErm46-mediated macrolide resistance on bacterial fitness. R. erythroplis A. 150 

paraffineus and N. globerula showed no significant differences in exponential growth rate and 151 

maximum growth upon acquisition of pRErm46 neither in complex medium (BHI) nor R. equi 152 

chemically defined medium (mREMM) (Table 5, Fig. 1). Surprisingly, some of the tested strains 153 

(R. fascians and R. rhodnii) even showed significantly improved fitness in mREMM medium 154 

when carrying pRERm46 (Table 5). This was particularly evident with R. fascians which failed 155 

to grow in mREMM in the absence, but not presence, of pRErm46, suggesting the intriguing 156 

possibility that some plasmid-encoded determinants may contribute to regulate bacterial growth 157 

in nutrient-limiting conditions. The only detrimental effect of pRErm46 on bacterial fitness was 158 

observed with R. rhodnii, which when harboring pRErm46 manifested slightly impaired growth 159 

(Table 5, Fig 5). 160 

 161 

DISCUSION  162 

Horse breeding farms that use macrolides and rifampin as a mass treatment for R. equi 163 

subclinical pneumonia likely represent highly antibiotic-pressurized environments [17, 25], 164 

where bacterial survival is contingent upon acquisition of a suitable resistant phenotype. This 165 



study explores how the horizontal transfer dynamics of the R. equi MLSB resistance plasmid 166 

pRErm46 to indigenous members of the environmental microbiota may contribute to the 167 

maintenance of a resistant microbial pool in equine farms. pRErm46 was successfully mobilized 168 

in vitro to six different Rhodococcus spp. as well as to N. globerula. This was unsurprising as 169 

most of the genes of the pRErm46 genetic backbone have an obvious rhodococcal origin[21] and 170 

because phylogenetic evidence supports that Nocardia is the closest Corynebacteriales genus to 171 

Rhodococcus [26, 27]. The fact that no conjugal transfer could be detected with Firmicutes 172 

species nor representative species of other Corynebacteriales such as Corybebacterium or 173 

Mycobacterium while it was observed with the Actinomycetales species A. paraffineus suggests 174 

that pRErm46’s host rage is essentially actinobacterial while at the same time exhibits genus-175 

specific restrictions. Further work is required with additional representative bacteria commonly 176 

found in the equine farm habitat or equine microbiome to more specifically delineate the 177 

conjugal transfer range of the R. equi macrolide resistance determinant and the potential 178 

mechanisms underpinning its persistence in equine farms.   179 

 erm(46)-driven macrolide resistance has only been reported in R. equi equine isolates 180 

carrying the pVAPA virulence plasmid [21]. This study shows that pRErm46 can be also 181 

acquired by R. equi carrying the pVAPB porcine plasmid, thus indicating that porcine 182 

environments/isolates may also theoretically contribute to the spread and maintenance of 183 

erm(46)-mediated R. equi macrolide resistance. This might not to be the case for ruminant-184 

associated R. equi isolates based on the observed potential incompatibility of the pRERm46 and 185 

pVAPN replicons. Our findings with the pVAPN plasmid imply that differences in compatibility 186 

among plasmids, typically abundant among soil-dwelling Actinobacteria, may be a critical factor 187 

in shaping pRErm46’s host range.  188 



Despite the ease with which pRErm46 is conjugally transferred between R. equi isolates 189 

[21, 28], and to other rhodococci or other susceptible Actinobacteria as shown here, the MLSB 190 

resistance determinant erm(46) has until now only been found in a specific R. equi clonal 191 

population[21]. This may be explained by the requirement of a strong antibiotic selective 192 

pressure for the maintenance of pRErm46[21], apart from the fact that no systematic searches 193 

have been undertaken to detect pRErm46 in the environmental microbiome. In addition, our in 194 

vitro data may not be an accurate reflection of what occurs in the farm environment. To 195 

approximate such conditions, we carried out mating assays in soil and horse manure, at four 196 

different incubation temperatures to mimic seasonal changes. Despite using a large conjugation 197 

mix of ~107 CFU/g of soil (100 times higher than the concentrations at which R. equi is typically 198 

found in soil in endemic farms [16]), conjugation remained sporadic but consistently detectable 199 

after 8 to 30 days at temperatures of 22-30˚C, independently of the donor:recipient ratio used. 200 

These results demonstrate that conjugal transfer of the R. equi macrolide resistance plasmid can 201 

occur in the equine farm environment, potentially contributing to its spread and endemicity.  202 

Interestingly, in the soil experiments we noted that all transconjugant colonies that 203 

resulted from the 10:1 (donor:recipient) matings after a 90 day incubation at 30˚C had acquired 204 

both the erm(46) gene and the pVAPA virulence amplicon while pRErm46’s transfer was not 205 

detected. erm(46) is actually carried within a highly mobile transposon (TnRErm46) harbored by 206 

pRErm46, from which we previously found it readily transposes to the R. equi genome including 207 

the virulence plasmid[21]. We therefore assume that the observed pRErm46-independent transfer 208 

of erm(46)-mediated macrolide resistance reflects the co-option of the transfer functions of an 209 

indigenous mobile element (most likely pVAPA, but potentially other extrachromosomal 210 

elements present in the microbiota present in the soil sample tested as well). This finding 211 



highlights the extraordinary horizontal spread potential of the erm(46) determinant via the 212 

transposition functions of the highly mobile TnRErm46 element[21]. 213 

 Finally, we explored potential bacterial fitness costs associated with the acquisition of the 214 

pRErm46 plasmid by components of the environmental microbiota. Similar to what we had 215 

previously observed in R. equi [21], pRErm46 showed a neutral effect on fitness in vitro, or even 216 

promoted higher growth rates than the corresponding isogenic strains lacking the plasmid, in all 217 

bacteria species tested excepting R. rhodnii. Although in vitro fitness assays may not accurately 218 

reflect the growth dynamics of bacteria in soil and manure, our results indicate that under 219 

suitable conditions environmental bacteria could serve as a potential reservoir for pRErm46 and, 220 

hence, MLSB resistance, in the absence of the primary host organism organism R. equi (and even 221 

antibiotic selective pressure).  222 



MATERIALS AND METHODS  223 

Bacterial strains and culture conditions. The bacterial strains used in this study are listed in 224 

Table 6. R. equi isolates were routinely cultured in Brain-Heart Infusion medium (BHI, Difco 225 

Laboratories-BD) at 30°C, 200 rpm, unless otherwise stated. Agar media were prepared by 226 

adding 1.6 % of bacteriological agar (Oxoid). Media were supplemented with antibiotics 227 

(erythromycin 10 µg/ml, rifampin 100 µg/ml, apramycin 50 µg/ml; Sigma) whenever required. 228 

 229 

Rifampin resistant strain derivation. Prior to the mating experiments, rifampin resistant 230 

(RmpR) derivatives of recipient species were obtained as previouisly described [9]for selection of 231 

transconjugants by double antimicrobial resistance (ErmR and rifampin RmpR). Briefly, several 232 

well-isolated colonies were collected, resuspended in PBS and streaked onto a BHI plate 233 

supplemented with 25 µg/ml of rifampin. After incubation for 48 h at 30°C, the RmpR phenotype 234 

was selected and stabilized by restreaking a few colonies in a fresh BHI plate supplemented with 235 

100 µg/ml rifampin.  236 

 237 

In vitro bacterial conjugation assay. Conjugation assays were carried out as described in 238 

Anastasi et al. 2015[28]. R equi donor and recipient strains were grown overnight in BHI (in the 239 

presence of antibiotic when required), washed twice with PBS and adjusted to OD600 = 1. Then, 240 

100 µl of donor suspension were mixed with 100 µl of the recipient 1:1 in a microtube. The 241 

mixture was centrifuged (6000 rpm, 10 min), resuspended in 5 µl of sterile BHI and spotted in a 242 

thick drop onto a BHI plate. After 72 h incubation at 30°C, the bacterial mixture was scraped and 243 

resuspended in PBS, and serial dilutions plated onto BHI agar supplemented with rifampin 244 

(recipient selection) or rifampin plus erythromycin (trasnconjugant selection). Transconjugants 245 



were confirmed by PCR. Conjugation ratios were calculated using the following formula: 246 

Conjugation ratio = n. of transconjugant cell/ n. recipient cells  247 

 248 

Conjugation assay in soil and horse manure. Bacterial mating assays were performed in soil 249 

and horse manure (collected from University of Georgia teaching farm) in parallel. For each time 250 

point and condition, 3g of soil/manure were placed in three 5ml test tubes (1gr/tube) and 251 

inoculated with 107 CFU/g containing 10:1, 1:1 or 1:10 donor:recipient ratios. Then, soil/manure 252 

was stirred during 30 min for an even bacterial distribution and incubated at four different 253 

temperatures 4 ̊, 22 ̊, 30 ̊ and 37 ̊C for up to 180 days. The presence of macrolide mobilization 254 

was checked at 5 time points: Day 0 [control], 7, 30, 90 and 180. For each time point and 255 

condition, 3 g of soil/manure (coming from 3 independent test tubes) were quantitatively 256 

cultured by serial 10-fold dilutions on R. equi selective NANAT[29] supplemented with 257 

corresponding antibiotics for transconjugant and recipient bacteria selection. < 10 transconjugant 258 

colonies were confirmed by PCR (S2). Conjugation ratios were calculated as stated above. 259 

 260 

Polymerase chain reaction. PCRs were carried out using C100 thermal cycler (Bio-Rad) and 261 

GoTaq® Flexi DNA Polymerase (Promega) following general parameters. 262 

 263 

DNA sequencing and analysis: Sanger sequencing was performed by Eurofins (Louisville, 264 

Kentucky). Sequences were analyzed using Ape plasmid editor (Wayne Davis) and the Basic 265 

Local Alignment Search Tool (BLAST www.ncbi.nlm.nih.gov/BLAST/) was used for the 266 

alignment of DNA sequences against the reference sequence. 267 

 268 



Antimicrobial susceptibility testing. Bacteria were prepared from overnight cultures in tryptic 269 

soy agar (TSA) by the direct colony suspension method according to the guidelines established 270 

by the CLSI, resulting in the recommended inoculum of ~ 1 to 5 × 105 CFU as verified by colony 271 

counting. The MICs of erythromycin were determined by use of ETEST® strips (bioMerieux).  272 

 273 

Bacterial growth assays. Potential bacterial fitness costs associated with the acquisition of the 274 

pRErm46 were investigated by monitoring the growth rate of macrolide -susceptible and -275 

resistant isogenic strains (that received pRErm46 by conjugation) in complex media BHI and in 276 

chemically defined medium mREMM[21],24. Bacteria were grown overnight in BHI, washed 277 

twice with PBS and adjusted to OD600 = 1. Then. 400 µl/well of bacteria in the selected media 278 

were added in triplicate to 48-well plates (Corning). The assays were conducted using an 279 

automated plate reader (Synergy HT, BioTeK) at 37̊ C, at 200rpm. Measurements were taken 280 

every 30 min. Data were analyzed using BioTeK Gen5 Data Analysis Software (BioTeK). Data 281 

were processed by biological growth curve fitting package “growthrates” [30] in statistical 282 

software R (version 3.6.1). Growth parameters (i) exponential growth and (ii) maximal bacterial 283 

yield were analyzed for significant differences using paired t-test also in R (version 3.6.1). 284 

 285 
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TABLE 1.  R. equi pRErm46 heterologous conjugation experiments.  

a Number of transconjugant/recipient CFU. Data represent means ± SD (n = 3 experiments). 
 

 

 

 

 

 

Donor  Recipient  Transfer frequencya 

R. equi 103S (pRErm46) 

R. equi porcine isolate (pVAPB) 9.14 ± 6.98 × 10-5 
R. equi bovine isolate (pVAPN) 4.41 ± 1.42 × 10-4 
R. defluvii 1.62 ± .85 × 10-5 
R. erythropolis 2.49 ± 1.12 × 10-5 
R. rhodochrous 4.31 ± 2.91 × 10-2 
R. rhodnii 7.51 ± 6.94 × 10-4 
R. ruber 3.39 ± 1.55 × 10-5 
R. fascians 1.6 ± .28 × 10-7 
N. globerula 7.9 ± 5.8 × 10-3 
A. paraffineus 5.1 ± 3.8 × 10-5 
M. smegmatis < 10–10 
M. fortuitum < 10–10  
C. pseudotuberculosis < 10–10 
S. aureus < 10–10 
S. zooepidemicus < 10–10 
E. faecalis <10–10 

R. equi porcine isolate (pVAPB, pRErm46) 

Susceptible R. equi 103- 

4.09± 2.37 × 10-6 
R. equi bovine isolate (pRErm46) 1.46 ± .62 × 10-5 
R. defluvii (pRErm46) 8.47 ± 4.60 × 10-6 
R. erythropolis (pRErm46) 1.95 ± 1.12 × 10-5 
R. rhodochrous (pRErm46) 5.97 ± 2.85 × 10-5 
R. rhodnii (pRErm46) 2.71 ± 2.21 × 10-5 
R. ruber (pRErm46) 2.68 ± 2.67 × 10-6 
R. fascians (pRErm46) 1.11 ± .39 × 10-7 
N. globerula (pRErm46) 1.18 ± .66 × 10-5 
A. paraffineus (RErm46) 1.23 ± 1.22 × 10-5 



TABLE 2.  Erythromycin MICs of different bacteria upon erm(46) conjugal acquisition. Data refers to 
MIC in mg/L determined using Etest (n = 3). 
 

Species erm(46) negative erm(46) positive 

R. equi porcine isolate  0.25 - 0.5 >256 
R. equi bovine isolate  0.5 >256 
R. defluvii  6 - 8 >256 
R. erythropolis 0.25 - 0.38 >256 
R. fascians  0.19 - 0.38 8 - 12 
R. rhodnii   0.38 - 0.75 >256 
R. rhodochrous 3 - 4 >256 
R. ruber  0.64 >256 
A. paraffineus  0.50 - 0.75 >256 
N. globerula 0.38 - 1 >256 

    



 

TABLE 3.  Conjugal transfer of pRErm46 in soil and horse manure. 

	   
day 30  day 90 day 180 

Sample Ratioa Temperature sample1 sample2 sample3 sample1 sample2 sample3 sample1 sample2 sample3 

Soil 

1:1 

4°C - - - - - - - - - 
22°C - - - - 2.56 × 10-4 - - - - 
30°C - - - - - - - - - 
37°C - - - - - - - - - 

1:10 

4°C - - - - - - - - - 
22°C 9.43× 10-6 1.58 × 10-6 2.38 × 10-5 - - -   - 1.14 × 10-4 
30°C - - - - - - - - - 
37°C - - - - - - - - - 

10:1 

4°C - - - - - - - - - 
22°C - - - - - - 6.25 × 10-4 - - 
30°C - - - - - *5.10 × 10-2     1.14 × 10-2 - - 
37°C - - - - - - - - - 

Manure 

1:1 

4°C - - - - - - - - - 
22°C - 2.11 × 10-2 - - - - - - - 
30°C - 2.21 × 10-5 - - - - - - - 
37°C - - - - - - - - - 

1:10 

4°C - - - - - - - - - 
22°C - - - - - - - - - 
30°C - - - - 1.25 × 10-5 - - 2.21 × 10-5 - 
37°C - - - - - - - - - 

10:1 

4°C - - - - - - - - - 
22°C - - - - - - - - - 
30°C - - - - - - - - - 
37°C - - - - - - - - - 

Data represents conjugation transfer frequencies per sample of soil/horse manure. 3 samples were collected each time point and incubation temperature. 
a Ratio refers to the ratio donor:recipient bacteria used in each conjugation assay 

 
 

 



TABLE 4. pRErm46 transfer from R. equi to other species in soil. 

Species Ratioa Temperature day 15 day 30 

R. erythropolis 
1:1 22°C  2.43 ± 2.02 × 10-5 3.32 ± 1.99 × 10-5 

30°C  9.66 ± 5.69 × 10-6  3.05 ± 1.46 × 10-6 

1:10 22°C  1.24 ± .40 × 10-6  1.29 ± .97 × 10-7 
30°C  1.91 ± 1.06 × 10-5  6.29 ± 2.20 × 10-6 

A. paraffineus 
1:1 22°C  9.98 ± 9.98 × 10-9 1.66 ± .98 × 10-7 

30°C 2.78 ± 1.15 × 10-6 2.18 ± 1.55 × 10-6 

1:10 22°C 5.61 ± 6.47 × 10-8 3.63 ± 1.98 × 10-7 
30°C 4.94 ± 2.39 × 10-7 9.07 ± 6.67 × 10-7 

N. globerula 
1:1 22°C  1.39 ± .81 × 10-1 2.32 ± 2.07 × 10-2 

30°C  5.62 ± 2.22 × 10-1 0.97 ± 1.19 × 10-3 

1:10 22°C 9.38 ± 8.25 × 10-3 4.82 ± 2.37 × 10-4 
30°C 6.06 ± 3.47 × 10-2 8.33 ± 8.33 × 10-3 

Data represent means ± SDs of 3 samples collected per time point and incubation temperature. 
a Ratio refers to the ratio donor:recipient bacteria used in each conjugation assay. 



TABLE 5. Growth data of isogenic bacteria in the presence and absence of the macrolide resistance 
plasmid pRErm46 in BHI and chemically defined medium. The maximum growth rate during exponential 
growth and maximal bacterial growth during the growth curve were estimated from fits of the OD600 
values using Growrates package in R. Asterisk represents significant (P<0.05) increase based on paired t-
test statistical analysis (n=3). 
 
 
(A) BHI      

 
Maximum Exponential Growth Rate (h-1) 

 Maximal Bacterial Growth (OD600) 

 
pRErm46 No pRErm46 - 

 
pRErm46 No pRErm46 

R. erythropolis 0.24 (± .007) 0.24 (± .009)  1.60 (± .05) 1.59 (± .05) 
R. fascians 0.17 (± .02) 0.21 (± .02)*  0.71 (± .20) 0.63 (± .14) 
R. rhodnii 0.13 (± .002)* 0.11 (± .004)  0.69 (± .03) 1.07 (± .03)* 
A. paraffineus 0.26(± .06) 0.26 (± .02)  1.35 (± .03) 1.42 (± .03) 

N. globerula 0.12 (± .01) 0.14 (± .02)  2.07 (± .29) 2.04 (± .28) 

 
     

 
     

(B) mREMM      

 
Maximum Exponential Growth Rate (h-1)  Maximal Bacterial Growth (OD600) 

  pRErm46 No pRErm46   pRErm46 No pRErm46  
R. erythropolis 0.22 (± .02) 0.22 (±.02)  0.36(± .006) 0.36 (±.01) 
R. fascians 0.39 (± .12)* 0.005 (± .004)  0.54 (± .06)* 0.02 (± .02) 
R. rhodnii 0.96 (± .01)* 0.86 (±.003)  0.46(± .008)* 0.42 (±.003) 
A. paraffineus 0.46(± .21) 0.41 (± .07)  0.36 (± .04) 0.38 (± .01) 

N. globerula 0.23 (± .06) 0.26 (±.06)  0.43 (± .05) 0.44 (±.05) 
 
 



TABLE 6. Bacterial strains used in this study. 
 

Species Description Source 

Rhodococcus equi 
  103– ApraR Plasmidless 103 strain containing the aac(3)IV apramycin resistance gene integrated on the 

chromosome Tripathi et al. 2012 
PAM2287 Macrolide and Rifampin clinical isolate Alvarez et al. 2019 

103+ApraR, pRERM46 Derivative strain from 103- ApraR.  pRERM46 and pVAPA plasmids introduced by conjugal 
transfer Giguère collection 

REPB1 Rifampin resistant derivative strain from porcine clinical isolate This study 
REPN1 Rifampin resistant derivative strain from bovine clinical isoalte This study 
Rhodococcus spp     
R. defluvii RmpR Rifampin resistant derivative strain from R. defluvii DSM45893 This study 
R. erythropolis RmpR Rifampin resistant derivative strain from R. erythropolis JCM 2892 This study 
R. fascians RmpR Rifampin resistant derivative strain from R. fasciansDSM20669 This study 
R. rhodnii RmpR Rifampin resistant derivative strain from R. rhodnii JCM 3203 This study 
R. rhodochrous RmpR Rifampin resistant derivative strain from R. rhodochrous JCM 2156  This study 
R. ruber RmpR Rifampin resistant derivative strain from R. ruber JCM 3205 This study 
Other bacteria      
Nocardia globerula RmpR Rifampin resistant derivative strain from N. globerula ATCC 21505 This study 
Arthrobacter paraffineus RmpR Rifampin resistant derivative strain from A. paraffineus ATCC19958 This study 
Mycobacterium smegmatis RmpR Rifampin resistant derivative strain from M. smegmatis MKD8 This study 
Mycobacterium fortuitum RmpR Rifampin resistant derivative strain from M. fortuitum from Hondalus strain collection This study 
Staphilococcus aureus RmpR Rifampin resistant derivative strain from S.aureus ATCC 29213 This study 
Enterococcus faecalis RmpR Rifampin resistant derivative strain from E. faecalis ATCC 29212 This study 
Streptococcus equi subspecies 
zooepidemicus RmpR 

Rifampin resistant derivative strain from S. zooepidermicus wild-type clinical isolate (from 
Giguère strain collection)  This study 

 



Figure 1. Acquisition of pRErm46 has a different fitness cost depending on the recipient species. pRErm46 was conjugally transferred from R. equi to (i) R. 
rhodnii, (ii) R. erythropolis, (iii) R. fascians (iv) A. paraffineus and (v) N. globerula. Growth curves with each isogenic set composed by a pRErm46+ (red) and a 
pRErm46- (turquoise) isolate in rich complex medium (BHI) and chemically defined medium (mREMM, see Materials and Methods). 
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