83 research outputs found

    Molecular dynamics simulation for modeling plasma spectroscopy

    Full text link
    The ion-electron coupling properties for a ion impurity in an electron gas and for a two component plasma are carried out on the basis of a regularized electron-ion potential removing the short-range Coulomb divergence. This work is largely motivated by the study of radiator dipole relaxation in plasmas which makes a real link between models and experiments. Current radiative property models for plasmas include single electron collisions neglecting charge-charge correlations within the classical quasi-particle approach commonly used in this field. The dipole relaxation simulation based on electron-ion molecular dynamics proposed here will provide means to benchmark and improve model developments. Benefiting from a detailed study of a single ion imbedded in an electron plasma, the challenging two-component ion-electron molecular dynamics simulations are proven accurate. They open new possibilities to obtain reference lineshape data.Comment: submitted for publication in the proceedings of the International Conference on Strongly Coupled Coulomb Systems, Journal of Physics

    Slow and fast micro-field components in warm and dense hydrogen plasmas

    Full text link
    The aim of this work is the investigation of the statistical properties of local electric fields in an ion-electron two component plasmas for coupled conditions. The stochastic fields at a charged or at a neutral point in plasmas involve both slow and fast fluctuation characteristics. The statistical study of these local fields based on a direct time average is done for the first time. For warm and dense plasma conditions, typically Ne≈1018cm−3N_{e}\approx 10^{18}cm^{-3}, % T_{e}\approx 1eV, well controlled molecular dynamics (MD) simulations of neutral hydrogen, protons and electrons have been carried out. Relying on these \textit{ab initio} MD calculations this work focuses on an analysis of the concepts of statistically independent slow and fast local field components, based on the consideration of a time averaged electric field. Large differences are found between the results of these MD simulations and corresponding standard results based on static screened fields. The effects discussed are of importance for physical phenomena connected with stochastic electric field fluctuations, e.g., for spectral line broadening in dense plasmas.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Effectiveness and economic analysis of the whole cell/recombinant B subunit (WC/rbs) inactivated oral cholera vaccine in the prevention of traveller's diarrhoea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays there is a debate about the indication of the oral whole-cell/recombinant B-subunit cholera vaccine (WC/rBS) in traveller's diarrhoea. However, a cost-benefit analysis based on real data has not been published.</p> <p>Methods</p> <p>A cost-effectiveness and cost-benefit study of the oral cholera vaccine (WC/rBS), Dukoral<sup>® </sup>for the prevention of traveller's diarrhoea (TD) was performed in subjects travelling to cholera risk areas. The effectiveness of WC/rBS vaccine in the prevention of TD was analyzed in 362 travellers attending two International Vaccination Centres in Spain between May and September 2005.</p> <p>Results</p> <p>The overall vaccine efficacy against TD was 42,6%. Direct healthcare-related costs as well as indirect costs (lost vacation days) subsequent to the disease were considered. Preventive vaccination against TD resulted in a mean saving of 79.26 € per traveller.</p> <p>Conclusion</p> <p>According to the cost-benefit analysis performed, the recommendation for WC/rBS vaccination in subjects travelling to zones at risk of TD is beneficial for the traveller, regardless of trip duration and visited continent.</p

    Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets

    Get PDF
    This paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme mag netized plasma regime realisable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experi ments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In par ticular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core elec tron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implo sions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally-driven or current-driven transport is dominating.Este trabajo forma parte del proyecto de investigación PID2019- 108764RB-I00 del Ministerio de Ciencia e Innovación, y de la Research Grant No. GOB-ESP2019-13 de la Universidad de Las Palmas de Gran Canari

    Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Get PDF
    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics
    • …
    corecore