20 research outputs found

    Crystal Structure of the Transcription Regulator RsrR Reveals a [2Fe-2S] Cluster Coordinated by Cys, Glu and His Residues

    Get PDF
    The recently discovered Rrf2 family transcriptional regulator RsrR coordinates a [2Fe-2S] cluster. Remarkably, binding of the protein to RsrR-regulated promoter DNA sequences is switched on and off through the facile cycling of the [2Fe-2S] cluster be-tween +2 and +1 states. Here, we report high resolution crystal structures of the RsrR dimer, revealing that the [2Fe-2S] cluster is asymmetrically coordinated across the RsrR monomer-monomer interface by two Cys residues from one subunit and His and Glu residues from the other. To our knowledge, this is the first example of a protein bound [Fe-S] cluster with three different amino acid side chains as ligands, and of Glu acting as ligand to a [2Fe-2S] cluster. Analyses of RsrR structures revealed a conformation-al change, centered on Trp9, which results in a significant shift in the DNA-binding helix-turn-helix region

    Electron and Proton Transfers Modulate DNA Binding by the Transcription Regulator RsrR

    Get PDF
    The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer

    Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors

    Get PDF
    International audienceAbstract Several transcription factors of the Rrf2 family use an iron-sulfur cluster to regulate DNA binding through effectors such as nitric oxide (NO), cellular redox status and iron levels. [4Fe-4S]-NsrR from Streptomyces coelicolor ( Sc NsrR) modulates expression of three different genes via reaction and complex formation with variable amounts of NO, which results in detoxification of this gas. Here, we report the crystal structure of Sc NsrR complexed with an hmpA1 gene operator fragment and compare it with those previously reported for [2Fe-2S]-RsrR/ rsrR and apo-IscR/ hyA complexes. Important structural differences reside in the variation of the DNA minor and major groove widths. In addition, different DNA curvatures and different interactions with the protein sensors are observed. We also report studies of NsrR binding to four hmpA1 variants, which indicate that flexibility in the central region is not a key binding determinant. Our study explores the promotor binding specificities of three closely related transcriptional regulators

    Development of a metalloproteomic approach to analyse the response of Arabidopsis cells to uranium stress

    No full text
    International audienceUranium is a naturally occurring radionuclide that is absorbed by plants and interferes with many aspects of their physiology and development. In this study, we used an ionomic, metalloproteomic, and biochemical approach to gain insights into the impact of uranyl ions on the proteome of Arabidopsis thaliana cells. First, we showed that most of the U was trapped in the cell wall and only a small amount of the radionuclide was found in the cell-soluble fraction. Also, the homeostasis of several essential elements was significantly modified in the cells challenged with U. Second, the soluble proteome from Arabidopsis cells was fractionated into 10 subproteomes using anion-exchange chromatography. Proteomic analyses identified 3676 proteins in the different subproteomes and the metal-binding proteins were profiled using inductively coupled plasma mass spectrometry. Uranium was detected in several chromatographic fractions, indicating for the first time that several pools of Arabidopsis proteins are capable of binding the uranyl ion in vivo. Third, we showed that the pattern of some lysine and arginine methylated proteins was modified following exposure to U. We further identified that the ribosomal protein RPS10C was dimethylated at two arginine residues in response to uranyl ion stress. Together, these results provide the first clues for the impact of U on the Arabidopsis proteome and pave the way for the future identification of U-binding proteins

    Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    No full text
    International audienceRubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/ProTrp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity

    Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    No full text
    http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0095512International audiencePost-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology

    Protein lysine methylation contributes to modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress

    No full text
    International audienceThe mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analyzed the importance of protein lysine methylation for plants to cope with cadmium. We analyzed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in two cadmium-sensitive species, Arabidopsis thaliana and A. lyrata, and in three populations of A. halleri with contrasting cadmium accumulation and tolerance traits. We showed that some proteins are differentially methylated at lysine residues in response to Cd and that a few genes coding KMTs are regulated by cadmium. Also, we showed that nine out of 23 A. thaliana mutants disrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked-out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that lysine methylation of non-histone proteins is impacted by cadmium and that several methylation events are important for modulating the response of Arabidopsis plants to cadmium stress

    Evidence for the involvement of protein lysine methylation in the response of sensitive and tolerant Arabidopsis species to cadmium stress

    No full text
    The mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analyzed the importance of protein lysine methylation for plants to cope with cadmium. We analyzed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in three Arabidopsis species. Arabidopsis thaliana and A. lyrata were used as cadmium-sensitive models and compared with three populations of A. halleri with different properties of accumulation and tolerance to cadmium. Immunoblotting, protein mass spectrometry, and gene expression analysis showed that the expression of some lysine-methylated proteins and genes coding KMTs is regulated by cadmium. Using a genetic screening, we showed that nine A. thaliana mutants interrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked-out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that the fine-tuned regulation of nonhistone proteins by lysine methylation has a role in the response of Arabidopsis plants to cadmium stress

    Design of specific inhibitors of quinolinate synthase based on [4Fe-4S] cluster coordination

    No full text
    International audienceQuinolinate synthase (NadA) is a [4Fe-4S] cluster-containing enzyme involved in the formation of quinolinic acid, the precursor of the essential NAD coenzyme. Here, we report the synthesis and activity of derivatives of the first inhibitor of NadA. Using multidisciplinary approaches we have investigated their action mechanism and discovered additional specific inhibitors of this enzyme
    corecore