688 research outputs found

    Three-body bound states with zero-range interaction in the Bethe-Salpeter approach

    Full text link
    The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: ({\it i}) For weak enough two-body interaction the three-body system is unbound. ({\it ii}) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. ({\it iii}) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.Comment: 13 pages, 7 figure

    Bethe-Salpeter bound-state structure in Minkowski space

    Get PDF
    The quantitative investigation of the scalar Bethe-Salpeter equation in Minkowski space, within the ladder-approximation framework, is extended to include the excited states. This study has been carried out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopting (i) the Nakanishi integral representation of the Bethe-Salpeter amplitude, and (ii) the formally exact projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already applied to the ground state and, on the other one, extends the investigation from the valence distribution in momentum space to the corresponding quantity in the impact-parameter space, pointing out some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter space.Comment: 15 pages, 7 figure

    Bound state structure and electromagnetic form factor beyond the ladder approximation

    Full text link
    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.Comment: 19 pages, 6 figures, submitted to Phys. Lett.

    Influences of Leaf Area Index estimations on water balance modeling in a Mediterranean semi-arid basin

    Get PDF
    Abstract. In the present work, the role played by vegetation parameters, necessary to the hydrological distributed modeling, is investigated focusing on the correct use of remote sensing products for the evaluation of hydrological losses in the soil water balance. The research was carried out over a medium-sized river basin in Southern Italy, where the vegetation status is characterised through a data-set of multi-temporal NDVI images. The model adopted uses one layer of vegetation whose status is defined by the Leaf Area Index (LAI), which is often obtained from NDVI images. The inherent problem is that the vegetation heterogeneity – including soil disturbances – has a large influence on the spectral bands and so the relation between LAI and NDVI is not unambiguous. We present a rationale for the basin scale calibration of a non-linear NDVI-LAI regression, based on the comparison between NDVI values and literature LAI estimations of the vegetation cover in recognized landscape elements of the study catchment. Adopting a process-based model (DREAM) with a distributed parameterisation, the influence of different NDVI-LAI regression models on main features of water balance predictions is investigated. The results show a significant sensitivity of the hydrological losses and soil water regime to the alternative LAI estimations. These crucially affects the model performances especially in low-flows simulation and in the identification of the intermittent regime

    Controller Synthesis for Timeline-based Games

    Get PDF
    In the timeline-based approach to planning, originally born in the space sector, the evolution over time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional timeline-based planning systems excel at the integration of planning with execution by handling temporal uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based games has been recently introduced. It has been proved that finding whether a winning strategy exists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers implementing such strategies is missing. This paper fills this gap, outlining an approach to controller synthesis for timeline-based games

    Evaluation of mechanical and interfacial properties of bio-composites based on poly(lactic acid) with natural cellulose fibers

    Get PDF
    The circular economy policy and the interest for sustainable material are inducing a constant expansion of the bio-composites market. The opportunity of using natural fibers in bio-based and biodegradable polymeric matrices, derived from industrial and/or agricultural waste, represents a stimulating challenge in the replacement of traditional composites based on fossil sources. The coupling of bioplastics with natural fibers in order to lower costs and promote degradability is one of the primary objectives of research, above all in the packaging and agricultural sectors where large amounts of non-recyclable plastics are generated, inducing a serious problem for plastic disposal and potential accumulation in the environment. Among biopolymers, poly(lactic acid) (PLA) is one of the most used compostable, bio-based polymeric matrices, since it exhibits process ability and mechanical properties compatible with a wide range of applications. In this study, two types of cellulosic fibers were processed with PLA in order to obtain bio-composites with different percentages of microfibers (5%, 10%, 20%). The mechanical properties were evaluated (tensile and impact test), and analytical models were applied in order to estimate the adhesion between matrix and fibers and to predict the material's stiffness. Understanding these properties is of particular importance in order to be able to tune and project the final characteristics of bio-composites

    Drafting a prioritized checklist of Crop Wild Relatives and Wild Harvested Plants of Italy: problems and solutions

    Get PDF
    The National checklists of Crop Wild Relatives (CWR) and Wild Harvested Plants (WHP) are the basic tools for the development of in situ and ex situ conservation strategies of plant genetic resources. Here we discuss the methodologies and the prioritization process we previously used in the preparation of the prioritized checklist of CWR and WHP for Italy. The starting point were the most up-to-date Italian checklists of native and alien flora with their updates used as a nomenclatural and distributive source of data. Sardinia and Sicily were kept separate from peninsular Italy to perform detailed analyses focused on the taxa of the two major islands. The origin, the endemic status, cultivation, economic importance, uses, gene pool or taxon group, and the Red List status information were added. The WHP status was attributed to all the taxa with known direct uses. A qualitative approach was adopted in the prioritization process, the main criteria used were: 1) the inclusion of wild relative taxa of crops listed in Annex I of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) and/or by the Italian Institute of Statistics (ISTAT) for cultivated areas and yield in the last 5 years; 2) the threatened taxa occurring in national or global Red lists; 3) the endemism. This prioritization process generated 102 taxa as most in need of specific protection and /or monitoring measures, 57 taxa requiring monitoring because of their restricted distribution although not requiring specific protection measures and 735 taxa not requiring any specific protection. However, different prioritization processes could have been applied to the Italian checklists yielding different results. Here we discuss the matter

    Evaluation of mussel shells powder as reinforcement for pla-based biocomposites

    Get PDF
    The use of biopolyesters, as polymeric matrices, and natural fillers derived from wastes or by-products of food production to achieve biocomposites is nowadays a reality. The present paper aims to valorize mussel shells, 95% made of calcium carbonate (CaCO3 ), converting them into high-value added products. The objective of this work was to verify if CaCO3, obtained from Mediterranean Sea mussel shells, can be used as filler for a compostable matrix made of Polylactic acid (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT). Thermal, mechanical, morphological and physical properties of these biocomposites were evaluated, and the micromechanical mechanism controlling stiffness and strength was investigated by analytical predictive models. The performances of these biocomposites were comparable with those of biocomposites produced with standard calcium carbonate. Thus, the present study has proved that the utilization of a waste, such as mussel shell, can become a resource for biocomposites production, and can be an effective option for further industrial scale-up

    Flavonoid and non-flavonoid compounds of autumn royal and egnatia grape skin extracts affect membrane PUFA's profile and cell morphology in human colon cancer cell lines

    Get PDF
    Grapes contain many flavonoid and non-flavonoid compounds with anticancer effects. In this work we fully characterized the polyphenolic profile of two grape skin extracts (GSEs), Autumn Royal and Egnatia, and assessed their effects on Polyunsaturated Fatty Acid (PUFA) membrane levels of Caco2 and SW480 human colon cancer cell lines. Gene expression of 15-lipoxygenase-1 (15-LOX-1), and peroxisome proliferator-activated receptor gamma (PPAR-γ), as well as cell morphology, were evaluated. The polyphenolic composition was analyzed by Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) analysis. PUFA levels were evaluated by gas chromatography, and gene expression levels of 15-LOX-1 and PPAR-γ were analyzed by real-time Polymerase Chain Reaction (PCR). Morphological cell changes caused by GSEs were identified by field emission scanning electron microscope (FE-SEM) and photomicrograph examination. We detected a different profile of flavonoid and non-flavonoid compounds in Autumn Royal and Egnatia GSEs. Cultured cells showed an increase of total PUFA levels mainly after treatment with Autumn Royal grape, and were richer in flavonoids when compared with the Egnatia variety. Both GSEs were able to affect 15-LOX-1 and PPAR-γ gene expression and cell morphology. Our results highlighted a new antitumor mechanism of GSEs that involves membrane PUFAs and their downstream pathways

    Chitin and Its Derivatives: Nanostructured Materials from Different Marine and Terrestrial Sources

    Get PDF
    Chitin is a very abundant polysaccharide that can be obtained from well-known marine sources (crustaceans), but also from terrestrial sources (mushrooms and insects). In the case where animal sources are considered, the material can be obtained by much abundant food or feeding waste. The extraction methodologies were not developed with similar technical readiness levels considering the different sources and the further conversion to chitin nanofibrils and chitosan is also under study, enabling the production of products differentiated for their macromolecular structures and morphology.Chitin nanofibrils from sea food sources were used in sanitary, cosmetic and packaging applications, where their anti-microbial properties and good biocompatibility were very useful. Chitin from mushrooms and sea food was used as starting material in possible coatings for cellulosic and bioplastic substrates. Currently chitin from insects (Hermetia Illucens) is also under study as well as the methodologies for extracting derivatives from it. Infrared analysis is an interesting technique to compare chitins, chitin nanofibrils and chitosan from different sources as well as electron microscopy for studying their morphology. The derivatives of chitin, such as chitosan and chitin nanofibrils, show anti-microbial properties. Hence, their use in several applications, ranging from packaging to sanitary and cosmetics, can conjugate high performance novel products with a reduced environmental concern. The comparison between chitin derivatives from different sources is very useful to address the biopolymers to specific applications, including the agricultural sector. While more and more applications for chitin derivatives will be developed, differences between them should be clarified and correlated to the sources, the methodologies of their production and their physical-chemical properties
    • …
    corecore