
D. Della Monica and P. Ganty (Eds.): 13th International Symposium on

Games, Automata, Logics and Formal Verification (GandALF 22)

EPTCS 370, 2022, pp. 131–146, doi:10.4204/EPTCS.370.9

© Acampora et al.

This work is licensed under the

Creative Commons Attribution License.

Controller Synthesis for Timeline-based Games

Renato Acampora

University of Udine, Italy

acampora.renato@spes.uniud.it

Luca Geatti Nicola Gigante

Free University of Bozen-Bolzano

{geatti,gigante}@inf.unibz.it

Angelo Montanari

University of Udine, Italy

angelo.montanari@uniud.it

Valentino Picotti

University of Southern Denmark

picotti@imada.sdu.dk

In the timeline-based approach to planning, originally born in the space sector, the evolution over

time of a set of state variables (the timelines) is governed by a set of temporal constraints. Traditional

timeline-based planning systems excel at the integration of planning with execution by handling tem-

poral uncertainty. In order to handle general nondeterminism as well, the concept of timeline-based

games has been recently introduced. It has been proved that finding whether a winning strategy ex-

ists for such games is 2EXPTIME-complete. However, a concrete approach to synthesize controllers

implementing such strategies is missing. This paper fills this gap, outlining an approach to controller

synthesis for timeline-based games.

1 Introduction

In the timeline-based approach to planning, the world is viewed as a system made of a set of independent

but interacting components whose behaviour over time (the timelines) is governed by a set of temporal

constraints, called synchronization rules. Timeline-based planning has been originally introduced in the

space industry [19], with timeline-based planners developed and used by space agencies on both sides of

the Atlantic [5, 4, 13, 2, 6], both for short- to long-term mission planning [7] and on-board autonomy [14].

While successful in practice, only recently timeline-based planning has been studied from a theo-

retical perspective. The formalism has been at first compared with traditional action-based languages à

la STRIPS, proving that they can be expressed by means of timeline-based languages [16]. Then, the

complexity of the timeline-based plan existence problem has been studied: the problem is EXPSPACE-

complete [17] over discrete time in the general case, and PSPACE-complete with qualitative constraints

[11]. On dense time, the problem goes from being NP-complete to undecidable, depending on the syn-

tactic restrictions applied [3]. The expressiveness of timeline-based languages has also been studied from

a logical perspective [10], and an automata-theoretic point of view [9].

Traditional timeline-based planning systems excel at the integration of planning with execution by

treating explicitly the concept of temporal uncertainty: the exact timings of the events under control of

the environment need not to be precisely known in advance. However, general nondeterminism, where

the environment can also decide what to do (instead of only when to do it) is usually not handled by

these systems. To overcome this limitation, the concept of timeline-based games has been recently intro-

duced [18]. In these games, the state variables are partitioned between the controller and the environment,

and the latter has the freedom to play arbitrarily as long as a set of domain rules, that define the game

arena, are satisfied. The controller plays to satisfy his set of system rules. A strategy for controller is

winning if it allows him/her to win independently from the choices of the environment.

Establishing whether a winning strategy exists for these games has been proved to be 2EXPTIME-

complete [18]. However, no concrete way to synthesize a controller implementing such strategies is

http://dx.doi.org/10.4204/EPTCS.370.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

132 Controller Synthesis for Timeline-based Games

known. The proof technique of the aforementioned complexity result involves the construction of a huge

(doubly exponential) concurrent game structure, which is used to model check some Alternating-time

Temporal Logic (ATL) formulas [1]. While this structure is deterministic and can be in principle used as

an arena to solve a reachability game and synthesize a controller, its construction is based on theoretical

nondeterministic procedures which have no hope to be ever concretely implemented. On the other hand,

the automata-theoretic approach by Della Monica et al. [9] provides a concrete and effective construction

of an automaton that accepts a word if and only if the original planning problem has a solution plan.

However, the automaton is nondeterministic and already doubly exponential, and the determinization

needed to use it as an arena would result into a further blow up and a non-optimal procedure.

In this paper, we provide a concrete and computationally optimal approach to controller synthesis for

timeline-based games. We overcome the limitations of both the above-mentioned approaches by devising

a direct construction for a deterministic finite-state automaton that recognizes solution plans, which is

doubly exponential in size (thus not requiring the determinization of a nondeterministic automaton).

This automaton is then used as the arena of a reachability game for which plenty of controller synthesis

techniques are known in the literature.

The paper is structured as follows. In Section 2 we introduce the needed background on timeline-

based planning and timeline-based games. Then, Section 3 provides the core technical contribution of the

paper, namely the construction of the deterministic automaton recognizing solution plans. Section 4 uses

this automaton as the game arena to solve the controller synthesis problem. Last, Section 5 summarizes

the main contributions of the work and discuss future developments.

2 Timeline-based games

In this section, we introduce timeline-based games, as defined in [18].

2.1 State variables, event sequences, synchronization rules

The first basic concept is that of state variable.

Definition 1 (State variable). A state variable is a tuple x = (Vx,Tx,Dx,γ), where:

• Vx is the finite domain of x;

• Tx : Vx → 2Vx is the value transition function of x, which maps each value v ∈Vx to the set of values

that can immediately follow it;

• Dx : Vx → N×N is the duration function of x, mapping each value v ∈ Vx to a pair (dx=v
min ,d

x=v
max)

specifying respectively the minimum and maximum duration of any interval where x = v;

• γ :Vx →{c,u} is the controllability tag, that, for each value v∈Vx, specifies whether it controllable

(γ(v) = c) or uncontrollable (γ(v) = u).

Intuitively, a state variable x takes a value from a finite domain and represents a simple finite-state

machine, whose transition function is Tx. The behaviour over time of a set of state variables SV is defined

by a set of timelines, one for each variable. Instead of reasoning about timelines directly, though, in this

paper we follow the approach outlined in [18] and represent the whole execution of a system, modeled

by means of a set of state variables, with a single word, called event sequence.

Definition 2 (Event sequence [18]). Let SV be a set of state variables. Let ASV be the set of all the terms,

called actions, of the form start(x,v) or end(x,v), where x ∈ SV and v ∈Vx.

Acampora et al. 133

An event sequence over SV is a sequence µ = 〈µ1, . . . ,µn〉 of pairs µi = (Ai,δi), called events, where

Ai ⊆ ASV is a set of actions, and δi ∈ N+, such that, for any x ∈ SV:

1. for all 1 ≤ i ≤ n, if start(x,v) ∈ Ai, for some v ∈Vx, then there is no start(x,v′) in any µ j before the

closest µk, with k > i, such that end(x,v) ∈ Ak (if any);

2. for all 1 ≤ i ≤ n, if end(x,v) ∈ Ai, for some v ∈ Vx, then there is no end(x,v′) in any µ j after the

closest µk, with k < i, such that start(x,v) ∈ Ak (if any);

3. for all 1 ≤ i < n, if end(x,v) ∈ Ai, for some v ∈Vx, then start(x,v′) ∈ Ai, for some v′ ∈Vx;

4. for all 1 < i ≤ n, if start(x,v) ∈ Ai, for some v ∈Vx, then end(x,v′) ∈ Ai, for some v′ ∈Vx.

Intuitively, an event sequence represents the evolution over time of the state variables of the system

by representing the start and the end of tokens, i.e., a sequence of adjacent intervals where a given

variable takes a given value. An event µi = (Ai,δi) consists of a set Ai of actions describing the start or

the end of some tokens, happening δi time steps after the previous one. In an event sequence, events are

collected to describe a whole plan.

Definition 2 intentionally implies that a started token is not required to end before the end of the

sequence, and a token can end without the corresponding starting action to have ever appeared before.

In this case we say the event sequence is open (on the right or on the left, respectively). Otherwise, it

is said to be closed. An event sequence closed on the left and open on the right is also called a partial

plan. Note that the empty event sequence is closed on both sides for any variable. Moreover, on closed

event sequences, the first event only contains start(x,v) actions and the last event only contains end(x,v)
actions, one for each variable x. Given an event sequence µ = 〈µ1, . . . ,µn〉 over a set of state variables

SV, with µi = (Ai,δi), we define δ (µ) = ∑1<i≤n δi, that is, δ (µ) is the time elapsed from the start to the

end of the sequence (its duration). The amount of time spanning a subsequence, written as δi, j when µ

is clear from context, is then δ (µ i, j) = ∑i<k≤ j δk. Finally, given an event sequence µ = 〈µ1, . . . ,µn〉, for

each 1 < i ≤ n, we define µ<i as 〈µ1, . . . ,µi−1〉.

In timeline-based games, the controller plays to satisfy a set of synchronization rules, which describe

the desired behavior of the system. Synchronization rules relate tokens, possibly belonging to different

timelines, through temporal relations among token endpoints. Let SV be a set of state variables and

N= {a,b, . . .} be an arbitrary set of token names. Moreover, let an atomic temporal relation, or simply

atom, be an expression of the form 〈term〉 ≤l,u 〈term〉, where l ∈ N, u ∈ N∪{∞}, and a term is either

start(a) or end(a), for some a ∈ N. A synchronisation rule R takes the following form:

R := a0[x0 = v0]→ E1 ∨E2 ∨ ·· ·∨Ek where

Ei := ∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn] . Ci

where a0, . . . ,an ∈ N, x0, . . . ,xn ∈ SV, v0, . . . ,vn are such that vi ∈ Vxi
, for all 0 ≤ i ≤ n, and Ci is a

conjunction of atomic temporal relations (a clause). The elements ai[xi = vi] are called quantifiers and

the quantifier a0[v0 = x0] is called the trigger. The disjuncts in the body are called existential statements.

We say that a token τ = (x,v,d) satisfies a quantifier ai[xi = vi] if x = xi and v = vi. The semantics

of a synchronisation rule R states that for every token satisfying the trigger, at least one of the existential

statements is satisfied. Each existential statement Ei requires the existence of some tokens, satisfying the

quantifiers in its prefix, such that the clause Ci is satisfied. When a token satisfies the trigger of a rule, it

is said to trigger such a rule.

For space concerns, we do not provide all the details of the semantics of synchronization rules. The

reader can find them in [18]. Intuitively, each time there is a token that satisfies the trigger of a rule,

134 Controller Synthesis for Timeline-based Games

one of its existential statements must be satisfied as well. The existential statements in turn assert the

existence of other tokens that satisfy a conjunction of atoms.

If a and b are two token names, then examples of atomic relations are start(a) ≤3,7 end(b) and

start(a) ≤0,+∞ start(b). Intuitively, a token name a refers to a specific token, that is, a pair of start(x,v)
and end(x,v) actions in an event sequence, and start(a) and end(a) to its endpoints. Then, an atom

such as start(a) ≤l,u end(b) constrains a to start before the end of b, with the distance between the two

endpoints to be comprised between the lower and upper bounds l and u.

Examples of synchronization rules are the following, where the relations = and ≤ are respectively

syntactic sugar for ≤0,0 and ≤0,+∞:

a[xs = Comm]→∃b[xg = Available] . start(b)≤ start(a)∧ end(a)≤ end(b)

a[xs = Science]→∃b[xs = Slewing]c[xs = Earth]d[xs = Comm] .

end(a) = start(b)∧ end(b) = start(c)∧ end(c) = start(d)

where the variables xs and xg represent respectively the state of a spacecraft and the visibility of the com-

munication ground station. The first rule requires the satellite and the ground station to synchronise their

communications, so that when the satellite is transmitting the ground station is available for reception.

The second rule instructs the system to transmit data back to Earth after every measurement session,

interleaved by the required slewing operation. A rule whose trigger is empty (⊤), called triggerless rule,

can be used to state the goal of the system. As an example, they allow one to force the spacecraft to

perform some scientific measurement at all:

⊤→ ∃a[xs = Science]

Triggerless rules have a trivial universal quantification, which means they only demand the existence

of some tokens, as specified by the existential statements. Although triggerless rules are meant to specify

the goals of a planning problem, they can be regarded as syntactic sugar on top of the syntax described

above. Indeed, triggerless rules can be translated into triggered rules [18], and thus we do not consider

them from here onwards.

Finally, even though our focus is on timeline-based games, we conclude the section by formally

defining timeline-based planning problems.

Definition 3 (Timeline-based planning problem). A timeline-based planning problem is a pair P =
(SV,S), where SV is a set of state variables and S is a set of synchronization rules over SV. An event

sequence µ over SV is a solution plan for P if all the rules in S are satisfied by µ .

2.2 The game arena

We are now ready to introduce timeline-based games. Their definition is quite involved, as their structure

has been designed with the goal of being strictly more general than timeline-based planning with uncer-

tainty [8] while being able to capture its semantics precisely. For space concerns, we keep the exposition

quite terse, but the reader can refer to [18] for details.

Definition 4 (Timeline-based game). A timeline-based game is a tuple G = (SVC,SVE ,S,D), where

SVC and SVE are the sets of controlled and external variables, respectively, and S and D are the sets of

system and domain synchronisation rules, respectively, both involving variables from SVC and SVE .

A partial plan for G is a partial plan over the state variables SVC ∪SVE . Let ΠG be the set of all

possible partial plans for G, simply Π when there is no ambiguity.

Acampora et al. 135

Since ε is a closed event sequence and δ (ε) = 0, the empty partial plan ε is a good starting point

for the game. Players incrementally build a richer partial plan, starting from ε , by playing actions that

specify which tokens to start and/or to end, adding an event that extends the event sequence, or comple-

menting the existing last event of the sequence. We partition all the available actions into those that are

playable by either of the two players.

Definition 5 (Partition of player actions). Let SV = SVC ∪SVE . The set A of available actions over SV

is partitioned into the sets AC of Charlie’s actions and AE of Eve’s actions, which are defined as follows:

AC = {start(x,v) | x ∈ SVC, v ∈Vx }
︸ ︷︷ ︸

start tokens on Charlie’s timelines

∪ {end(x,v) | x ∈ SV, v ∈Vx, γx(v) = c}
︸ ︷︷ ︸

end controllable tokens

(1)

AE = {start(x,v) | x ∈ SVE , v ∈Vx }
︸ ︷︷ ︸

start tokens on Eve’s timelines

∪ {end(x,v) | x ∈ SV, v ∈Vx, γx(v) = u}
︸ ︷︷ ︸

end uncontrollable tokens

(2)

Hence, players can start tokens for the variables that they own, and end the tokens that hold values

that they control. Actions are combined into moves that can start/end multiple tokens at once.

Definition 6 (Moves). A move µC for Charlie is a term of the form wait(δC) or play(AC), where δC ∈N
+

and ∅ 6= AC ⊆ AC is either a set of starting actions or a set of ending actions.

A move µE for Eve is a term of the form play(AE) or play(δE ,AE), where δE ∈ N
+ and AE ⊆ AE is

either a set of starting actions or a set of ending actions.

We denote by MC and ME the set of moves playable by Charlie and Eve, respectively. Moves such

as play(AC) and play(δE ,AE) can play either start(x,v) actions only or end(x,v) actions only. A move

of the former kind is called a starting move, while a move of the latter kind is called an ending move.

We consider wait moves as ending moves. Moreover, Starting and ending moves have to be alternated

during the game.

Definition 7 (Round). A round ρ is a pair (µC,µE) ∈MC ×ME of moves such that:

1. µC and µE are either both starting or both ending moves;

2. either ρ = (play(AC),play(AE)), or ρ = (wait(δC),play(δE ,AE)), with δE ≤ δC;

A starting (ending) round is one made of starting (ending) moves. Note that since Charlie cannot

play empty moves and wait moves are considered ending moves, each round is unambiguously either a

starting or an ending round. Also note that since play(δE ,AE) moves are played only in rounds together

with wait(δC), and wait(δC) is always an ending move, then any play(δE ,AE) must be an ending move.

We can now define how a round is applied to the current partial plan to obtain the new one. The game

always starts with a single starting round.

Definition 8 (Outcome of rounds). Let µ = 〈µ1, . . . ,µn〉 be an event sequence, with µn = (An,δn) or

µn = (∅,0) if µ = ε . Let ρ = (µC,µE) be a round, let δE and δC be the time increments of the moves,

with δC = δE = 1 for play(A) moves, and let AE and AC be the set of actions of the two moves (AC is

empty if µC is a wait move).

The outcome of ρ on µ is the event sequence ρ(µ) defined as follows:

1. if ρ is a starting round, then ρ(µ) = µ<nµ ′
n, where µ ′

n = (An ∪AC ∪AE,δn);

2. if ρ is an ending round, then ρ(µ) = µµ ′, where µ ′ = (AC ∪AE,δE);

We say that ρ is applicable to µ if:

a) the above construction is well-defined, i.e., ρ(µ) is a valid event sequence by Definition 2;

136 Controller Synthesis for Timeline-based Games

b) ρ is an ending round if and only if µ is open for all variables.

We say that a single move by either player is applicable to µ if there is a move for the other player

such that the resulting round is applicable to µ .

The game starts from the empty partial plan ε , and players play in turn, composing a round from the

move of each one, which is applied to the current partial plan to obtain the new one.

It is now time to define the notion of strategy for each player, and of winning strategy for Charlie.

Definition 9 (Strategies). A strategy for Charlie is a function σC : Π →MC that maps any given partial

plan µ to a move µC applicable to µ . A strategy for Eve is a function σE : Π×MC →ME that maps a

partial plan µ and a move µC ∈MC applicable to µ , to a µE such that ρ = (µC,µE) is applicable to µ .

A sequence ρ = 〈ρ0, . . . ,ρn〉 of rounds is called a play of the game. A play is said to be played

according to some strategy σC for Charlie, if, starting from the initial partial plan µ0 = ε , it holds that

ρi = (σC(Πi−1),µ
i
E), for some µ i

E , for all 0 < i ≤ n, and to be played according to some strategy σE for

Eve if ρi = (µ i
C,σE(Πi−1,µ

i
C)), for all 0 < i ≤ n. It can be seen that for any pair of strategies (σC,σE)

and any n ≥ 0, there is a unique run ρn(σC,σE) of length n played according both to σC and σE .

Then, we say that a partial plan µ , and the play ρ such that µ = ρ(ε), are admissible, if the partial

plan satisfies the domain rules, and are successful if the partial plan satisfies the system rules.

Definition 10 (Admissible strategy for Eve). A strategy σE for Eve is admissible if for each strategy σC

for Charlie, there is k ≥ 0 such that the play ρk(σC,σE) is admissible.

Charlie wins if, assuming domain rules are respected, he manages to satisfy the system rules no

matter how Eve plays.

Definition 11 (Winning strategy for Charlie). Let σC be a strategy for Charlie. We say that σC is a

winning strategy for Charlie if for any admissible strategy σE for Eve, there exists n ≥ 0 such that the

play ρn(σC,σE) is successful.

We say that Charlie wins the game G if he has a winning strategy, while Eve wins the game if a

winning strategy for Charlie does not exist.

3 A deterministic automaton for timeline-based planning

In this section we encode a timeline-based planning problem into a deterministic finite state automaton

(DFA) that recognises all and only those event sequences that represent solution plans for such problem.

This automaton will form the basis for the game arena solved in the next section. The words accepted by

the automaton are event sequences representing solution plans.

Let P = (SV,S) be a timeline-based planning problem. To get a finite alphabet, we define d =
max(L,U)+ 1, where L and U are in turn the maximum lower and (finite) upper bounds appearing in

any rule of P, and we account only for event sequences such that the distance between two consecutive

events is at most d. It can be easily seen that this assumption does not loose generality (for a proof, see

Lemma 4.8 in [15]). Hence, the symbols of the alphabet Σ are events of the form µ = (A,δ), where

A ⊆ ASV and 1 ≤ δ ≤ d. Formally, Σ = 2ASV × [d], where [d] = {1, . . . ,d }. Note that the size of Σ

is exponential in the size of the problem. Moreover, we define the amount window(P) as the product

of all the non-zero coefficients appearing as upper bounds in rules of P. Intuitively, window(P) is the

maximum amount of time a rule of P can count far away from the occurrence of the quantified tokens.

For example, consider the following rule:

a0[x0 = v0]→∃a1[x1 = v1]a2[x2 = v2]a3[x3 = v3] .

start(a1)≤[4,14] end(a0)∧ end(a0)≤[0,+∞] end(a2)∧ start(a2)≤[0,3] end(a3)

Acampora et al. 137

start(a0) end(a0) start(a1) end(a1) start(a2) end(a2) start(a3) end(a3)

start(a0)
end(a0) −4

start(a1) 14

end(a1)
start(a2) 3

end(a2) 0

start(a3)
end(a3) 0

Figure 1: DBM of an example synchronization rule. Missing entries are intended to be +∞.

In this case, window(P) (assuming this is the only rule of the problem), would be 3 · 14 = 42. This

means the rule can precisely account for what happens at most 42 time point from the occurrence of

its quantified tokens. For example, if the token a1 appears at a given distance from a0, it has to be at

less than 42 time points (less than 14, in particular), and any modification of the plan that changes such

distance has the potential to break the satisfaction of the rule. Instead, what happens further away from

a0 only affects the satisfaction of the rule qualitatively. Suppose the tokens a2 and a3 lie at 100 time

points from a0 (at most 3 time steps from each other). Changing this distance (while maintaining the

qualitative order between tokens) cannot ever break the satisfaction of the rule. See [15] for a precise

account of the properties of window(P).
A key observation underlying our construction is that every atomic temporal relation T ≤l,u T ′ can

be rewritten as the conjunction of two inequalities T ′ − T ≤ u and T − T ′ ≤ −l, and that the clause C

of an existential statement E can be rewritten as a system of difference constraints ν(C) of the form

T −T ′ ≤ n, with n ∈ Z+∞. Then, the system ν(C) can be conveniently represented by a squared matrix

D indexed by terms, where the entry associated with D[T,T ′] gives the upper bound on T − T ′. Such

matrices, which take the name of Difference Bound Matrices (DBMs) [12, 20], can be conveniently

updated as the plan evolves to keep track of the satisfaction of the atomic temporal relations among

terms. In building a DBM for the system of constraints ν(C), we augment the system with constraints

of kind start(ai)− end(ai)≤−d
xi=vi

min and end(ai)− start(ai)≤ d
xi=vi

max , for any quantified token ai[xi = vi]
of E. Moreover, if two different bounds T − T ′ ≤ n and T − T ′ ≤ n′ with n′ < n belong to ν(C), we

keep only T − T ′ ≤ n′. As an example, the DBM for the existential graph of the rule above is the one

in Fig. 1. Note that, when the bounds of the temporal relations are translated into a DBM, there is no

longer a distinction between lower and upper bounds. However, for some of the entries we can retrieve

their original meaning. Indeed, if D[T,T ′]< 0, then such entry is the lower bound of a temporal relation

T ≤l,u T ′, whereas, if D[T,T ′]> 0, it is the upper bound of a relation T ′ ≤l,u T .

On top of DBMs, we define the concept of matching structure, a data structure that allows us to

manipulate and reason about partially matched existential statements, i.e., existential statements of which

only a part of the requests has already been satisfied by the part of the word already read, while the rest

can be still potentially matched in the future.

Definition 12 (Matching Structure). Let E≡ ∃a1[x1 = v1] . . .am[xm = vm] .C be the existential statement

of a synchronisation rule R≡ a0[x0 = v0]→ E1 ∨ ·· ·∨Ek over the set of state variables SV.

The matching structure for E is a tuple ME = (V,D,M, t) where:

138 Controller Synthesis for Timeline-based Games

• V is the set of terms start(a) and end(a) for a ∈ {a0, . . . ,am };

• D ∈ Z
|V |2

+∞ is a DBM indexed by terms of V where D[T,T ′] = n if (T −T ′ ≤ n) ∈ ν(C), D[T,T ′] = 0

if T = T ′, and D[T,T ′] = +∞ otherwise;

• M ⊆V and 0 ≤ t ≤ window(P).

The set M contains the terms of V that the matching structure has correctly matched over the event

sequence read so far. With M =V \M we denote the actions that we have yet to see. Then, we say that

a matching structure M is closed if M = V , it is initial if M = ∅ and it is active if it is not closed and

start(a0) ∈ M. Intuitively, a matching structure is active if its trigger has been matched over the word the

automaton is reading. Then, when all the terms have been matched over the word, the matching structure

becomes closed. The component t is the time elapsed since start(a0) has been matched. When time

flows, a matching structure can then be updated as follows.

Definition 13 (Time shifting). Let δ > 0 be a positive amount of time, and M= (V,D,M, t) be a matching

structure. The result of shifting M by δ time units, written M+ δ , is the matching structure M′ =
(V,D′,M, t ′) where:

• for all T,T ′ ∈V :

D′[T,T ′] =

D[T,T ′]+δ if T ∈ M and T ′ ∈ M

D[T,T ′]−δ if T ∈ M and T ′ ∈ M

D[T,T ′] otherwise

• and

t ′ =

{

t +δ if M is active

t otherwise

Definition 14 (Matching). Let M=(V,D,M, t) be a matching structure and I ⊆M a set of matched terms.

A matching structure M′ = (V,D,M′, t) is the result of matching the set I, written M∪ I, if M′ = M∪ I.

Beside updating the reference t to the trigger occurrence of an active matching structure, Defini-

tion 13 dictates how to update the entries of the DBM. In particular, the distance bounds between any

pair of terms T and T ′ where one is in M and the other is not are tighten by the elapsing of time:

when T ∈ M and T ′ ∈ M, D[T,T ′] is a lower bound loosen by adding the elapsed time δ , when T ∈ M

and T ′ ∈ M, D[T,T ′] is an upper bound tighten by subtracting δ . For example, consider the DBM in

Fig. 1 and consider the pair of terms start(a1) and end(a0). D[start(a1),end(a0)] = −4, meaning that

end(a0)− start(a1) ≤ 4 must hold. Suppose start(a1) ∈ M (i.e., it has been matched), and end(a0) 6∈ M

(it still has to). Now, if 1 time point passes, the entry in the DBM is incremented and updated to

−4+ 1 = −3, which corresponds to the constraint end(a0)− start(a1) ≤ 3. This reflects the fact that

to be able to satisfy the constraint, end(a0) has now only 3 time steps left before it is too late. Defini-

tion 14 tells us how to update the set M of a matching structure.

To correctly match an existential statement while reading an event sequence, a matching structure

is updated only as long as no violations of temporal constraints are witnessed. As such, an event is

classified from the standpoint of a matching structure as admissible or not.

Definition 15 (Admissible Event). An event µ = (A,δ) is admissible for a matching structure ME =
(V,D,M, t) if and only if, for every T ∈ M and T ′ ∈ M, δ ≤ D[T ′,T], i.e., the elapsing of δ time units

does not exceed the upper bound of some term T ′ not yet matched by ME.

Acampora et al. 139

Each admissible event µ read from the word can be matched with a subset of the terms of the match-

ing structure. There are usually more than one way to match events and terms. The following definition

makes this choice explicit.

Definition 16 (I-match Event). Let ME = (V,D,M, t) be a matching structure and I ⊆ M. An I-match

event is an admissible event µ = (A,δ) for ME such that:

1. for all token names a ∈ N quantified as a[x = v] in E we have that:

(a) if start(a) ∈ I, then start(x,v) ∈ A;

(b) end(a) ∈ I if and only if start(a) ∈ M and end(x,v) ∈ A;

2. and for all T ∈ I it holds that:

(a) for every other term T ′ ∈V , if D[T ′,T]≤ 0, then T ′ ∈ M∪ I;

(b) for all T ′ ∈ M, δ ≥−D[T ′,T], i.e., all the lower bounds on T are satisfied;

(c) for each other term T ′ ∈ I, either D[T ′,T] = 0, D[T,T ′] = 0, or D[T ′,T] = D[T,T ′] = +∞.

Intuitively, an event is an I-match event if the actions in the event correctly match the terms in I.

Item 1 ensures that each term is correctly matched over an action it represents and, most importantly,

that the endpoints of a quantified token correctly identify the endpoints of a token in the event sequence.

Item 2 ensures that matching the terms in I does not violate any atomic temporal relation. In particular,

Item 2a deals with the qualitative aspect of an “happens before” relation, while Items 2b and 2c deal with

the quantitative aspects of the lower bounds of these relations. Note that an ∅-event is admitted.

Let MP be the set of all the matching structures for a planning problem P. By Definition 16, a

single event can represent several I-match events for a matching structure, hence a matching structure

can evolve into several matching structures, one for each I-match event. Such evolution is defined as

a ternary relation S ⊆ MP × Σ×MP such that (M,(A,δ),M′) ∈ S if and only if (A,δ) is an I-match

event for M and M′ = (M+ δ)∪ I. To deal with the nondeterministic nature of this relation, states of

the automaton will comprise sets of matching structures collecting all the possible outcomes of S, so that

suitable notation for working with sets of matching structures, denoted by ϒ hereafter, is introduced. We

define ϒR
t ⊆ ϒ as the set of all the active matching structures M ∈ ϒ with timestamp t, associated with

any existential statement of R. Intuitively, matching structures in ϒR
t contribute to the fulfilment of the

same triggering event for the rule R (because they have the same timestamp), regardless of the existential

statement they represent. We also define ϒ⊥ ⊆ ϒ as the set of non active matching structures of ϒ. A set

ϒ is closed if there exists M ∈ ϒ such that M is closed. Lastly, a function stepµ extends the relation S to

sets of matching structures: stepµ(ϒ) = {M′ | (M,µ ,M′) ∈ S, for some M ∈ ϒ}.

We are now ready to define the automaton. If E is an existential statement, let EE be the set of all

the existential statements of the same rule of E. Let FP be the set of functions mapping each existential

statement of P to a set of existential statements, and let DP be the set of functions mapping each existential

statement to a set of matching structures. A simple automaton TP that checks the transition function and

duration functions of the variables is easy to define. Then, given a timeline-based planning problem

P = (SV,S), the corresponding automaton is AP = TP ∩ SP where SP, the automaton that checks the

satisfaction of the synchronization rules, is defined as SP = (Q,Σ,q0,F,τ), where:

1. Q = 2M ×D×F∪ {⊥} is the finite set of states, i.e., states are tuples of the form 〈ϒ,∆,Φ〉 ∈
2M×D×F, plus a sink state ⊥;

2. Σ is the input alphabet defined above;

3. the initial state q0 = 〈ϒ0,∆0,Φ0〉 is such that ϒ0 is the set of initial matching structures of the

existential statements of P and, for all existential statements E of P, we have ∆0(E) = ∅ and

Φ0(E) = EE;

140 Controller Synthesis for Timeline-based Games

4. F ⊆ Q is the set of final states defined as:

F =

{

〈ϒ,∆,Φ〉 ∈ Q

∣
∣
∣
∣
∣

M is not active for all M ∈ ϒ

and ∆(E) =∅ for all E of P

}

5. τ : Q×Σ → Q is the transition function that given a state q = 〈ϒ,∆,Φ〉 and a symbol µ = (A,δ)
computes the new state τ(q,µ). Let stepEµ(ϒ

R
t) = {ME |ME ∈ stepµ(ϒ

R
t)}. Moreover, let ΨR

t =

{E |ME ∈ stepµ(ϒ
R
t)}. Then, the updated components of the state are based on what follows,

where W = window(P):

ϒ′ = stepµ(ϒ⊥)∪
⋃{

stepµ(ϒ
R
t)

∣
∣
∣ t <W −δ and stepµ(ϒ

R
t) is not closed

}

∆′(E) =

{

stepEµ(ϒ
R
t) where t is the minimum such that t ≥W −δ and stepEµ(ϒ

R
t) 6=∅

stepµ(∆(E)) if such t does not exist

Φ′(E) =

{

EE if E ∈ Ψ(E′) for some E′ such that ∆′(E′) is closed

Φ(E)\{E′ | ∃t ≥W −δ . E′ ∈ ΨR
t ∧E 6∈ ΨR

t } otherwise

Let ∆′′(E) = ∆′(E) unless there is an E′ with E ∈ Φ′(E′) such that ∆′(E′) is closed, in which case

∆′′(E) =∅. Then, τ(q,µ) = 〈ϒ′,∆′′,Φ′〉 if the following holds:

(a) for every ϒR
t , stepµ(ϒ

R
t) 6=∅, and

(b) for every synchronisation rule R≡ a0[x0 = v0]→ E1 ∨ ·· · ∨En in S, if start(x0,v0) ∈ A, then

there exists MEi
= (V,D,M,0) ∈ ϒ′, with i ∈ {1 . . .n}, such that start(a0) ∈ M;

Otherwise, τ(q,µ) =⊥.

Let us explain what is going on. The first component ϒ of an automaton state q = (ϒ,∆,Φ) is a set of

matching structures that keeps track of what have been tracked so far. Intuitively, the automaton precisely

keeps track of what happened to the last window(P) time points, and only summarizes what happened

before that window, which is what allows us to keep the size under control. Any matching structure in ϒ

has t < window(P). Matching structures in ϒ evolve following the step function, until they are closed or

the t component reaches window(P). Matching structures that reach window(P) are promoted to a new

role. Their new task is to record the pieces of existential statements that still have to be matched in order

to satisfy all the trigger events of R that no longer fit into the recent history of the event sequence (i.e., the

last window(P) time points). These matching structures are not stored in ϒ though, they are summarized

by the function ∆ that maps each existential statement E of a rule R to the set of matching structures for

E with t = window(P).
When a set ϒR

t exceeds the bound window(P), the ∆ function must be updated by merging the in-

formation of ϒR
t to the information already present in ∆. Now, it has to be noted that, by closing a set

∆(E), we can not conclude that every event that triggered R actually satisfies R. Indeed, there can be sets

∆(E) and ∆(E′) that are in charge of the satisfaction of the same rule R, but for different trigger events,

and closing ∆(E) does not imply that R has been satisfied. The opposite case may also arise, in which

∆(E) and ∆(E′) contribute to the fulfilment of the same trigger events and closing either set suffices to

satisfy R. To overcome the information lost when a set of matching structures gets added to the ∆ func-

tion, the Φ function (the third component of the automaton states) maps each existential statement E to

the set of existential statements E′ such that ∆(E′) tracks the fulfilment of the same trigger events of the

set ∆(E). We use Φ as follows: when a set ∆(E) gets closed, we can discard its matching structures and

all the matching structures of the sets ∆(E′), with E′ ∈ Φ(E).
One can prove the soundness and completeness of our construction.

Acampora et al. 141

Theorem 1. (Soundness and completeness) Let P = (SV,S) be a timeline-based planning problem and

let AP be the associated automaton. Then, any event sequence µ is a solution plan for P if and only if µ

is accepted by AP.

Recall that we assumed the timestamp of each event of event sequences to be bounded, but since

events can have an empty set of actions, Theorem 1 can actually deal with arbitrary event sequences, after

adding suitable empty events. Now, let us look at the size of the automaton. Let E be the overall number

of existential statements in P, which is linear in the size of P. It can be seen that |DP| ∈ O((2|MP |)
E
) =

O(2E·|MP|), i.e., the number of ∆ functions is doubly exponential in the size of P. Then, observe that

|FP| ∈ O((2E)
E
) = O(2E2

). Then, |SP| ∈ O(|Σ| · 2|MP|), that is, the size of SP is at most exponential in

the number of possible matching structures. To bound this number, let N be the largest finite constant

appearing in P as bound in any atom or value duration function and let L be the length of the largest

existential prefix of an existential statement occurring inside a rule of P. Notice that N is exponential in

the size of P, since constants are expressed in binary, while L ∈ O(|P|). Then, the entries of a DBM for

P, of which there is a number quadratic in L, are constrained to take values within the interval [−N,N]
(excluding the infinitary value +∞), whose size is linear in N. By Definition 12, it follows that, for the

planning problem P, |MP| ∈ O(NL2

·2L ·window(P)), i.e., the number of matching structures is at most

exponential in the size of P. Hence, we proved the following:

Theorem 2 (Size of the automaton). Let P = (SV,S) be a timeline-based planning problem and let AP

be the associated automaton. Then, the size of AP is at most doubly-exponential in the size of P.

Note that this is the same size as the automaton built by Della Monica et al. [9], but their automaton

was nondeterministic, while ours is by construction deterministic, essential for its use as a game arena.

4 Controller synthesis

In this section we use the deterministic automaton constructed above to obtain a deterministic arena

where we can solve a simple reachability game for checking the existence of (and, in this case, to syn-

thesize) a controller for the corresponding timeline-based game.

4.1 From the automaton to the arena

Let G = (SVC,SVE ,S,D) be a timeline-based game. We use the construction of the automaton explained

in the previous section in order to obtain a game arena. However, the automaton construction considers a

planning problem with a single set of synchronization rules, while here we have to account for the roles

of both S and D.

To do that, let AS and AD be the deterministic automata built over the timeline-based planning

problem PS = (SVC ∪ SVE ,S) and PD = (SVC ∪ SVE ,D), respectively. We define the automaton AG

as AD∪AS, i.e., the union of AS with the complement of AD. Note that these are all standard automata-

theoretic constructions over DFAs. Any accepting run of AG represents either a plan that violates the

domain rules or a plan that satisfies both the domain and the system rules, in conformance with Defini-

tion 11. Note that AG is deterministic and can be built from AD and AS with only a polynomial increase

in size.

Now, the AG automaton is still not suitable as a game arena, because the moves of the timeline-

based game are not directly visible in the labels of the transitions. In other words, the AG automaton

reads events, while we need an automaton that reads game moves. In particular, a single transition in

142 Controller Synthesis for Timeline-based Games

µ
=
({

en
d(

x,
v)
} ,

5)

µ ′ = (∅,4)

µ
′′=

({
en

d
(x
,v)

}
,1)

q

w

µ = ({end(x
,v1),

end(y
,w1),

start(x
,v2),

start(y
,w2)

} ,5
)

wait(5)

wait(6)

wait(7)

wait(10)

play

(

5,

{

end(x,v1)end(y,w1)

})

play

(
5,

{ en
d(

x,
v1
)

en
d(

y,
w1
)

}
)

play({start(x,v2)})

p
lay

({
start(y

,w
2)})

Figure 2: On the left, the removal of transitions µ = (A,δ) with δ > 1 and ending actions of controllable

tokens in A. On the right, the transformation of a transition of the AG into a sequence of transitions in

Aa
G, with x ∈ SVC, y ∈ SVE , and γx(v1) = γy(w1) = u.

the automaton can correspond to different combinations of rounds, since the presence of wait(δ) moves

is not explicit in the transition. For example, an event µ = (A,5) can be the result of a wait(5) move

by Charlie followed by a play(5,A) move by Eve, or by any wait(δ) move with δ > 5 followed by

play(5,A). Hence, we need to further adapt AG to obtain a suitable arena.

Let AG = (Q,Σ,q0,F,τ) be the automaton built as described before. Let µ = (A,δ) be an event. If

δ > 1, this transition must have resulted from Charlie playing a wait(δ ′) move with δ ′ ≥ δ . However,

if A contains any end(x,v) action with x ∈ SVC, this is for sure the result of more than one pair of start-

ing/closing rounds. In order to simplify the construction below, we remove this possibility beforehand.

More formally, we define a slightly different automaton A′
G = (Q,Σ,q0,F,τ

′) where τ ′ is now a partial

transition function (i.e., the automaton becomes incomplete) that agrees with τ on everything excepting

that transitions τ(q,(A,δ)) is undefined if δ > 1 and A contains any end(x,v) action with x ∈ SVC. You

can see an example of this operation in Fig. 2, on the left. Note that this removal does not change the

plans accepted by the automaton because for each transition τ(q,(A,δ)) = q′ with δ > 1 there are two

transitions τ(q,(∅,δ −1)) = q′′ and τ(q′′,(A,1)) = q′.

Now we can transform the automaton in order to make the game rounds, and especially wait(δ)
moves, explicit. Intuively, each transition of the automaton is split into four transitions explicitating

the four moves of the two rounds. Given the automaton A′
G = (Q,Σ,q0,F,τ

′), we define the automaton

Aa
G = (Qa,Σa,qa

0,F
a,τa), which will be the arena of our game, as follows:

1. Qa = Q∪{qδ | 1 ≤ δ ≤ d }∪{qδ ,A | 1 ≤ δ ≤ d,A ⊆ A} is the set of states;

2. Σa =MC ∪ME , i.e., the alphabet is turned into the set of moves of the two players;

3. qa
0 = q0 and Fa = F , i.e., initial and final states do not change;

4. the (partial) transition function τa is defined as follows. Let w = τ(q,µ) with µ = (A,δ). We

distinguish the case where δ = 1 or δ > 1.

Acampora et al. 143

(a) if δ = 1, let AC ⊆ A and AE ⊆ A be the set of actions in A playable by Charlie and by Eve,

respectively. Then:

i. τ(q,play(Ae
C)) = q1,Ae

C
, where Ae

C is the set of ending actions in AC;

ii. τ(q1,Ae
C
,play(Ae

E)) = q1,Ae
C∪A

e
E
, where Ae

E is the set of ending actions in AE ;

iii. τ(q1,Ae
C∪A

e
E
,play(As

C)) = q1,Ae
C∪A

e
E∪A

s
C
, where As

C is the set of starting actions in AC;

iv. τ(q1,Ae
C∪A

e
E∪A

s
C
,play(As

E)) = w, where As
E is the set of starting actions in AE ;

where the mentioned states are added to Qa as needed.

(b) if δ > 1, let AC ⊆ A and AE ⊆ A be the set of actions in A playable by Charlie and by Eve,

respectively. Note that by construction, AC only contains starting actions. Then:

i. τ(q,wait(δC)) = qδC
for all δ ≤ δC ≤ d;

ii. τ(qδC
,play(δ ,Ae

E)) = qδ ,Ae
E

where Ae
E is the set of ending actions in AE ;

iii. τ(qδ ,Ae
E
,play(AC)) = qδ ,Ae

E∪AC
;

iv. τ(qδ ,Ae
E∪AC

,play(As
E)) = w where As

E is the set of starting actions in AE ;

where the mentioned states are added to Qa as needed.

All the transitions not explicitly defined above are undefined.

A graphical example of the above construction can be seen in Fig. 2, on the right. Note that the

structure of the original AG automaton is preserved by Aa
G. In particular, one can see that for each q ∈ Q

and event µ = (A,δ), any sequence of moves whose outcome would append µ to the partial plan (see

Definition 8) reach from q the same state w in Aa
G that is reached in AG by reading µ . Hence, one can

consider Aa
G to also being able to read event sequences, even though its alphabet is different. We denote

as [µ] the state q ∈ Qa reached by reading µ in Aa
G.

Moreover, note that, with a minimal abuse of notation, any play ρ for the game G can be seen as a

word readable by the automaton Aa
G. Hence, we can prove the following.

Theorem 3. If G is a timeline-based game, for any play ρ for G, ρ is successful if and only if it is

accepted by Aa
G.

4.2 Computing the Winning Strategy

Once built the arena, we can focus on computing the winning region WC for Charlie, that is, the set of

states of the arena from which Charlie can force the play to reach a final state of Aa
G, no matter of the

strategy of Eve. These games are called reachability games [21]. If the winning region WC is not empty,

a winning strategy of Charlie can be simply derived from WC. As a consequence of Theorems 1 and 3,

the computed winning strategy σC for Aa
G respects Definition 11.

As stated in [21, Theorem 4.1], rechability games are determined, and the winning region WC along

with the corresponding positional winning strategy s are computable. Let Aa
G = (Qa,Σa,qa

0,F
a,τa)

be the automaton built from G as described in the previous section. Note that, by construction, in

any state q ∈ Qa only one of the players has available moves. Let Qa
C ⊆ Qa be the set of states be-

longing to Charlie, i.e., states from which Charlie can move, and let Qa
E = Qa \ Qa

C. Moreover, let

E = {(q,q′) ∈ Qa ×Qa | ∃µ . τa(q,µ) = q′ }, i.e., the set of all the edges of Aa
G.

Now, for each i ≥ 0, we can compute the i-th attractor of Fa, written Attri
C(F

a), that is, the set of

144 Controller Synthesis for Timeline-based Games

states from which Charlie can win in at most i steps. Attri
C(F

a) is defined as follows:

Attr0
C(F

a) = Fa

Attri+1
C (Fa) = Attri

C(F
a)

∪{qa ∈ Qa
C | ∃r

(
(qa

,r) ∈ E ∧ r ∈ Attri
C(F

a)
)
}

∪{qa ∈ Qa
E | ∀r

(
(qa

,r) ∈ E → r ∈ Attri
C(F

a)
)
}

As remarked in [21], the sequence Attr0
C(F

a) ⊆ Attr1
C(F

a) ⊆ Attr2
C(F

a) ⊆ . . . becomes stationary for

some index k ≤ |Qa|. Thus, we define AttrC(F
a) =

⋃|Qa|
i=0 Attri

C(F
a). In order to prove that WC =

AttrC(F
a), it suffices to use the proof of [21, Theorem 4.1] for showing that AttrC(F

a) ⊆ WC and

WC ⊆ AttrC(F
a).

To compute a winning strategy for Charlie in the case that qa
0 ∈WC, it is sufficient to define s(q) = µ

for any µ such that τa(q,µ) = q′ with q,q′ ∈ WC (which is guaranteed to exist by construction of the

attractor). Then, the strategy σC for Charlie in G (see Definition 11) is defined as σC(µ) = s([µ]).

Theorem 4. Given Aa
G = (Qa,Σa,qa

0,F
a,τa), qa

0 ∈ WC if and only if Charlie has a winning strategy σC

for G.

Proof. We first prove soundness, that is, qa
0 ∈WC implies that Charlie has a winning strategy σC for G.

If qa
0 ∈WC, then it means that there exists a positional winning strategy s for Charlie for the reachability

game over the arena Aa
G. By Theorem 3 and by the definition of reachability game, we know that each

play generated by s corresponds to a successful play for game G. Let σC(µ) = s([µ]) be the winning

strategy for Charlie in game G as defined above. By construction of σC and by Definition 11, this means

that σC is a winning strategy of Charlie for G.

To prove completeness (i.e., if Charlie has a winning strategy σC for G then qa
0 ∈ WC), we proceed

as follows. From Definition 11 we know that a winning strategy σC for Charlie is a strategy such that

for every admissible strategy σE for Eve, there exists n ≥ 0 such that the play ρn(σC,σE) is successful.

From Theorem 3, we know that ρn(σC,σE) is accepted by Aa
G. Therefore, ρn(σC,σE) reaches a state in

the set Fa starting from qa
0. By definition of reachability game, this means that qa

0 ∈WC.

5 Conclusions

In this paper, we completed the picture about timeline-based games by providing an effective procedure

for controller synthesis, whereas before only a proof of the complexity of the strategy existence problem

was known. Previous approaches either provided a deterministic concurrent game structure which was

however not built effectively, or an effectively built automata which was, however, nondeterministic

and thus unsuitable for use as a game arena without a costly determinization. Our approach surpasses

the limits of both previous ones by providing a deterministic construction, of optimal asymptotic size,

suitable to be used as a game arena. Then, we solve the reachability game on the arena with standard

methods to effectively compute the winning strategy for the game, if it exists.

This work paves the way to interesting future developments. On the one hand, the effective proce-

dure shown here can be finally implemented, bringing timeline-based games from theory to practice. On

the other hand, developing an effective system based on such games requires to answer many interesting

questions, from which concrete modeling language to adopt, to which algorithmic improvements are

needed to make the approach feasible. For example, it can be foreseen that, to solve the fixpoint com-

putation that leads to the strategy with reasonable performance, the application of symbolic techniques

would be needed.

Acampora et al. 145

Acknowledgements

Nicola Gigante and Luca Geatti acknowledge the support of the Free University of Bozen-Bolzano,

Faculty of Computer Science, by means of the projects TOTA (Temporal Ontologies and Tableaux Algo-

rithms) and STAGE (Synthesis of Timeline-based Planning Games).

References

[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM

49(5), pp. 672–713, doi:10.1145/585265.585270.

[2] Sara Bernardini & David E. Smith (2007): Developing Domain-Independent Search Control for Europa2. In:

Proceedings of the ICAPS 2007 Workshop on Heuristics for Domain-Independent Planning.

[3] Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron & Gerhard J. Woeginger (2020):

Timeline-based planning over dense temporal domains. Theor. Comput. Sci. 813, pp. 305–326, doi:10.

1016/j.tcs.2019.12.030.

[4] Amedeo Cesta, Gabriella Cortellessa, Michel Denis, Alessandro Donati, Simone Fratini, Angelo Oddi,

Nicola Policella, Erhard Rabenau & Jonathan Schulster (2007): Mexar2: AI Solves Mission Planner Prob-

lems. IEEE Intelligent Systems 22(4), pp. 12–19, doi:10.1109/MIS.2007.75.

[5] Amedeo Cesta, Gabriella Cortellessa, Simone Fratini, Angelo Oddi & Nicola Policella (2006): Software

Companion: The Mexar2 Support to Space Mission Planners. In Gerhard Brewka, Silvia Coradeschi, Anna

Perini & Paolo Traverso, editors: Proceedings of the 17th European Conference on Artificial Intelligence,

Frontiers in Artificial Intelligence and Applications 141, IOS Press, pp. 622–626.

[6] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher,

T. Barrett, G. Stebbins & D. Tran (2000): ASPEN - Automating Space Mission Operations using Automated

Planning and Scheduling. In: Proceedings of the International Conference on Space Operations.

[7] Steve A. Chien, Gregg Rabideau, Daniel Tran, Martina Troesch, Joshua Doubleday, Federico Nespoli,

Miguel Perez Ayucar, Marc Costa Sitja, Claire Vallat, Bernhard Geiger, Nico Altobelli, Manuel Fernandez,

Fran Vallejo, Rafael Andres & Michael Kueppers (2015): Activity-Based Scheduling of Science Campaigns

for the Rosetta Orbiter. In Qiang Yang & Michael Wooldridge, editors: Proceedings of the 24th International

Joint Conference on Artificial Intelligence, AAAI Press, pp. 4416–4422. Available at http://ijcai.org/

Abstract/15/655.

[8] Marta Cialdea Mayer, Andrea Orlandini & Alessandro Umbrico (2016): Planning and execution with flexible

timelines: a formal account. Acta Informatica 53(6-8), pp. 649–680, doi:10.1007/s00236-015-0252-z.

[9] Dario Della Monica, Nicola Gigante, Angelo Montanari & Pietro Sala (2018): A Novel Automata-Theoretic

Approach to Timeline-Based Planning. In Michael Thielscher, Francesca Toni & Frank Wolter, editors:

Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning,

AAAI Press, pp. 541–550. Available at https://aaai.org/ocs/index.php/KR/KR18/paper/view/

18024.

[10] Dario Della Monica, Nicola Gigante, Angelo Montanari, Pietro Sala & Guido Sciavicco (2017): Bounded

Timed Propositional Temporal Logic with Past Captures Timeline-based Planning with Bounded Constraints.

In Carles Sierra, editor: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp.

1008–1014, doi:10.24963/ijcai.2017/140.

[11] Dario Della Monica, Nicola Gigante, Salvatore La Torre & Angelo Montanari (2020): Complexity of Quali-

tative Timeline-Based Planning. In: Proceedings of the 27th International Symposium on Temporal Repre-

sentation and Reasoning, LIPIcs 178, pp. 16:1–16:13, doi:10.4230/LIPIcs.TIME.2020.16.

[12] David L. Dill (1989): Timing Assumptions and Verification of Finite-State Concurrent Systems. In Joseph

Sifakis, editor: Proceedings of the International Workshop on Automatic Verification Methods for Finite State

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1016/j.tcs.2019.12.030
http://dx.doi.org/10.1016/j.tcs.2019.12.030
http://dx.doi.org/10.1109/MIS.2007.75
http://ijcai.org/Abstract/15/655
http://ijcai.org/Abstract/15/655
http://dx.doi.org/10.1007/s00236-015-0252-z
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
http://dx.doi.org/10.24963/ijcai.2017/140
http://dx.doi.org/10.4230/LIPIcs.TIME.2020.16

146 Controller Synthesis for Timeline-based Games

Systems, Lecture Notes in Computer Science 407, Springer, pp. 197–212, doi:10.1007/3-540-52148-8_

17.

[13] Jeremy Frank & Ari K. Jónsson (2003): Constraint-Based Attribute and Interval Planning. Constraints 8(4),

pp. 339–364, doi:10.1023/A:1025842019552.

[14] Simone Fratini, Amedeo Cesta, Andrea Orlandini, Riccardo Rasconi & Riccardo De Benedictis (2011):

APSI-based Deliberation in Goal Oriented Autonomous Controllers. In: ASTRA 2011, 11, ESA.

[15] Nicola Gigante (2019): Timeline-based Planning: Expressiveness and Complexity. Ph.D. thesis, University

of Udine, Italy. Available on arXiv at: https://arxiv.org/abs/1902.06123.

[16] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer & Andrea Orlandini (2016): Timelines Are Ex-

pressive Enough to Capture Action-Based Temporal Planning. In Curtis E. Dyreson, Michael R. Hansen &

Luke Hunsberger, editors: Proceedings of the 23rd International Symposium on Temporal Representation

and Reasoning, IEEE Computer Society, pp. 100–109, doi:10.1109/TIME.2016.18.

[17] Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer & Andrea Orlandini (2017): Complexity of

Timeline-Based Planning. In Laura Barbulescu, Jeremy Frank, Mausam & Stephen F. Smith, editors: Pro-

ceedings of the 27th International Conference on Automated Planning and Scheduling, AAAI Press, pp.

116–124. Available at https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758.

[18] Nicola Gigante, Angelo Montanari, Andrea Orlandini, Marta Cialdea Mayer & Mark Reynolds (2020): On

timeline-based games and their complexity. Theor. Comput. Sci. 815, pp. 247–269, doi:10.1016/j.tcs.

2020.02.011.

[19] Nicola Muscettola (1994): HSTS: Integrating Planning and Scheduling. In Monte Zweben & Mark S. Fox,

editors: Intelligent Scheduling, chapter 6, Morgan Kaufmann, pp. 169–212.

[20] Mathias Péron & Nicolas Halbwachs (2007): An abstract domain extending difference-bound matrices with

disequality constraints. In: International Workshop on Verification, Model Checking, and Abstract Interpre-

tation, Springer, pp. 268–282, doi:10.1007/978-3-540-69738-1_20.

[21] Wolfgang Thomas (2008): Solution of Church’s Problem: A tutorial. New Perspectives on Games and

Interaction. Texts on Logic and Games 5.

http://dx.doi.org/10.1007/3-540-52148-8_17
http://dx.doi.org/10.1007/3-540-52148-8_17
http://dx.doi.org/10.1023/A:1025842019552
https://arxiv.org/abs/1902.06123
http://dx.doi.org/10.1109/TIME.2016.18
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758
http://dx.doi.org/10.1016/j.tcs.2020.02.011
http://dx.doi.org/10.1016/j.tcs.2020.02.011
http://dx.doi.org/10.1007/978-3-540-69738-1_20

	1 Introduction
	2 Timeline-based games
	2.1 State variables, event sequences, synchronization rules
	2.2 The game arena

	3 A deterministic automaton for timeline-based planning
	4 Controller synthesis
	4.1 From the automaton to the arena
	4.2 Computing the Winning Strategy

	5 Conclusions

