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The quantitative investigation of the scalar Bethe–Salpeter equation in Minkowski space, within the 
ladder-approximation framework, is extended to include the excited states. This study has been carried 
out for an interacting system composed by two massive bosons exchanging a massive scalar, by adopt-
ing (i) the Nakanishi integral representation of the Bethe–Salpeter amplitude, and (ii) the formally exact 
projection onto the null plane. Our analysis, on one hand, confirms the reliability of the method already 
applied to the ground state and, on the other one, extends the investigation from the valence distri-
bution in momentum space to the corresponding quantity in the impact-parameter space, pointing out 
some relevant features, like (i) the equivalence between Minkowski and Euclidean transverse-momentum 
amplitudes, and (ii) the leading exponential fall-off of the valence wave function in the impact-parameter 
space.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the last decade and a half, a quite effective tool is emerg-
ing for solving the Bethe–Salpeter equation (BSE) [1] directly in 
Minkowski space, i.e. avoiding to look for solutions in the Eu-
clidean space by exploiting the Wick rotation [2]. The novel ap-
proach is based on the Nakanishi integral representation (NIR) 
of the n-leg transition amplitudes, that was proposed long time 
ago [3–5]. In particular, the Bethe–Salpeter (BS) amplitude can 
be formally written like the NIR for the 3-leg amplitude, namely 
a proper folding of an unknown Nakanishi weight function and 
a denominator that contains the analytic structure [6–13]. To be 
practical, let us quickly mention the main features of the NIR for 
the BS amplitude: (i) the weight function is real and smooth for 
bound states (see [14] for the zero-energy scattering states), and 
(ii) it depends upon real variables, of which one is non-compact
and the others are compact; (iii) the denominator must depend 
only upon the independent scalars that can be constructed from 
the external momenta. Assuming the validity of the NIR for the 
bound-state case, and taking advantage of the above mentioned 
features, one can exactly project onto the null-plane (see, e.g. [15,
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16]) the BS amplitude integrating over the Light-front (LF) variable 
k− = k0 − k3 (k+ = k0 + k3 and k⊥ ≡ {k1, k2}) and formally obtain 
the so-called LF valence wave function (cf. [17,18,12]), i.e. the am-
plitude of the component with the lowest number of constituents 
when the LF Fock expansion of the interacting-system state is con-
sidered. Remarkably, within the NIR approach, the LF valence wave 
function is given by a non-singular integral involving the Nakan-
ishi weight function. This suggests to integrate on k− both sides
of the BSE, getting an integral equation for the Nakanishi weight 
function. If there exist solutions for this integral equation (this 
validates a posteriori the previous assumption), then the BS am-
plitudes of bound states can be reconstructed. In particular, when 
the above procedure is applied to the BSE with the irreducible ker-
nel in ladder approximation, a generalized eigen-equation for the 
Nakanishi weight function is obtained (see, e.g., Refs. [9,13] for the 
LF case), while for the cross-ladder case one has to deal with a 
non-linear eigen-problem (see Ref. [10]). Notice that in Refs. [6,7]
solutions of the scalar BSE in ladder approximation have been ob-
tained by using (i) standard variables (and not the LF ones), and 
(ii) exploiting the uniqueness of the Nakanishi weight function.

Aim of the present work is to carefully study both spectrum 
and 3D structure of the bound states, obtained by solving the lad-
der BSE for a system composed by two massive scalars interacting 
through a massive scalar. Such an investigation is a natural ex-
tension of the previous analysis of only the ground state [13]. 
In particular, the structure is studied by means of the 3D repre-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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sentation of the LF valence component, both in momentum and 
impact-parameter (IP) spaces. One of the motivations for starting a 
detailed analysis of the non-perturbative features of an interacting 
system in momentum and IP spaces (see, e.g. [19] for an introduc-
tion) is given by the increasing interest on this topic in hadronic 
physics, where the valence component plays an important role in 
determining the dynamical properties of hadrons. For instance, the 
valence component is an important dynamical ingredient for eval-
uating parton transverse-momentum distributions, which depend 
upon both the Bjorken momentum fraction x and the transverse 
components of parton momentum [20,21], or parton density dis-
tributions in IP space, that can be related to the generalized parton 
distributions (see, e.g., Ref. [20]).

Our paper is organized as follows. In Sec. 2, we quickly in-
troduce the general formalism (see, e.g., Refs. [12–14] for more 
details) and we present a comparison between Minkowski and Eu-
clidean results for the eigenvalues of the relevant integral equation. 
In Sec. 3, the valence LF wave function and the corresponding den-
sity distributions, evaluated both in transverse-momentum space 
and impact-parameter one, are discussed, showing our numerical 
results for the available spectrum together with some interesting 
formal outcomes of our analysis. In Sec. 4, conclusions are drawn 
and some perspectives presented.

2. Minkowski space solutions of the Bethe–Salpeter equation

Let us recall the general formalism we have adopted to solve 
the BSE in Minkowski space. As it is well known the BSE in mo-
mentum space for a relativistic bound state is given by the follow-
ing homogeneous integral equation

�(k, p) = G(12)
0 (k, p)

∫
d4k′

(2π)4
iK (k,k′; p)�(k′, p) , (1)

where i K (k, k′; p) is the interaction kernel that contains all two-
body irreducible diagrams, pμ is the total momentum with the 
bound state mass given by M = √

p2. In the present approach we 
do not consider the self-energy contribution, so that G(12)

0 (k, p) is 
the product of two free propagators,

G(12)
0 (k, p) = i[

(p/2 + k)2 − m2 + iε
] i[

(p/2 − k)2 − m2 + iε
] ,

(2)

with m the constituent mass. The BS amplitude for an s-wave state 
solution of Eq. (1) can be written in terms of NIR as [9,12,13]

�(k, p) = −i

1∫
−1

dz′
∞∫

0

dγ ′ g(γ ′, z′;κ2)

[γ ′ + κ2 − k2 − p · kz′ − iε]3
, (3)

where κ2 ≡ m2 − M2/4. By substituting (3) into (1) and integrating 
over k− on both sides, one can obtain the following generalized 
integral equation for the Nakanishi weight function (for details see 
Refs. [9,12,13]):

∞∫
0

dγ ′
{

g(γ ′, z;κ2)

[γ ′ + γ + z2m2 + (
1 − z2

)
κ2]2

−
1∫

−1

dz′V L F (z, z′, γ ,γ ′)g(γ ′, z′;κ2)

}
= 0, (4)

where
∞∫
0

dγ ′ g(γ ′, z;κ2)

[γ ′ + γ + z2m2 + (
1 − z2

)
κ2]2

= p+
∫

dk−

2π
�(k, p) =

√
2ψ(ξ,k⊥)

ξ(1 − ξ)
, (5)

with γ = |k⊥|2, ξ = (1 − z)/2 and ψ(ξ, k⊥) is the valence light-
front wave function (the factor 

√
2 comes from the symmetry of the 

problem; see, for example, [12]). In Eq. (4) V L F is the Nakanishi 
kernel given in terms of the BS 4D kernel, by

V L F (z, z′, γ ,γ ′) ≡ ip+
∞∫

−∞

dk−

2π
G(12)

0 (k, p)

×
∫

d4k′

(2π)4

iK (k,k′; p)

[k′ 2 + p · k′z′ − γ ′ − κ2 + iε]3
.

(6)

In this work we adopt the ladder approximation for the BS kernel:

i K (Ld)(k,k′) = i (−i g)2

(k − k′)2 − μ2 + iε
= −i

α (16πm2)

(k − k′)2 − μ2 + iε
,

(7)

where α = g2/(16πm2) and μ is the exchanged-scalar mass. Ac-
cording to [13], we have solved Eq. (4) by using a basis func-
tion expansion of the Nakanishi weight function, composed by 
Laguerre polynomials L j(aγ ) (with j = 0, 1, Ng ) for describing 
the γ -dependence (where a is an appropriate parameter, as dis-
cussed in [13]) and even Gegenbauer polynomials C (5/2)

2
 (z) for 
the z one (with 2
 = 0, 2, ..., 2Nz). More specifically, for the 
γ -dependence we use an expansion in terms of the functions 
L j(γ ) ≡ √

aL j(aγ )e−aγ /2, where 
∫ ∞

0 dγLi(γ )L j(γ ) = δi j . The ex-
pansion in Gegenbauer polynomials is given in terms of the func-

tions G
(z) ≡ 3

√
(2
)!

(
2
 + 5

2

)
/�(2
 + 5)(1 − z2)C5/2

2
 (z), where ∫ 1
−1 dzG
(z)G
′ (z) = δ

′ . This last choice is dictated by the sym-

metry property of the Nakanishi weight function g(γ , z; κ2) =
g(γ , −z; κ2), that is requested by the bosonic nature of the 
adopted constituents. It should be recalled that a definite statis-
tical property of the BS amplitude avoids the so-called abnormal 
solutions of BSE, namely the ones with negative norm [3,4,7], that 
are associated with excitations in relative time of the bound states 
(see Refs. [22,23] for a more recent discussion of the issue). Fi-
nally, the z2 dependence of g(γ , z; κ2) entails a symmetry of the 
valence wave function, namely ψ(ξ, k⊥) = ψ(1 − ξ, k⊥).

In our numerical approach, accurate convergence was achieved 
for the ground state by using 14 Laguerre (Ng = 13) and 10 Gegen-
bauer (Nz = 9) polynomials. For the excited states, the convergence 
was reached with 26 Laguerre and 10 Gegenbauer polynomials. 
After introducing the basis function expansion and the ladder ap-
proximation Eq. (7), Eq. (4) turns into the matrix form of a general-
ized eigenvalue problem. In particular, one can symbolically write

B(M) g = αA(M) g, (8)

where g is the eigenvector. Differently from the familiar non-
relativistic case, in the eigen-equation (8) the role of eigenvalue is 
played by the coupling constant α, while the mass of the system 
M is a parameter that can be assigned, after fixing the exchanged-
scalar mass μ. In the standard way of analyzing the BSE within 
the NIR framework [6–13], one introduces the binding energy as

B = 2m − M, (9)
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Table 1
Comparison of the spectra obtained in the Euclidean space in the Minkowski one, by 
varying μ/m and, consequently, αgr , but taken fixed the value of the ground-state 
binding energy to B(0)/m = 1.9.

(μ/m,αgr) Euclidean Minkowski

(0.05, 6.324)
B(1)/m 0.258 0.259
B(2)/m 0.090 0.090

(0.1, 6.437)
B(1)/m 0.220 0.221
B(2)/m 0.051 0.050

(0.5, 8.047) B(1)/m 0.0082 0.0082

which constrains the range of B/m to the interval between 0
and 2, i.e. 0 ≤ M/m ≤ 2, avoiding in this way the well-known 
instability of the φ3 model (see Ref. [24]). In our NIR studies of 
the ladder BSE, Eq. (8) has a pivotal role. First, after fixing m, μ
and B gr , it yields the coupling constant of the ground state, i.e. 
the smallest value of the coupling constant that we call αgr ; sec-
ondly it allows one to calculate the spectrum. Indeed, once we 
have found the coupling constant αgr , one can find the excited 
state with respect to B gr by slightly changing Eq. (8), as follows

λ g = 1

αgr
B(M)−1A(M)g . (10)

In other words, after fixing m, μ and αgr , we search for values 
M = 2m − B > Mgr that produce eigenvalues λ = 1 (as trivially 
seen, for M = Mgr one has λ = 1).

2.1. Comparing Minkowski and Euclidean eigenvalues

In order to check the reliability of the computed masses for 
the excited states, we provide a comparison between the results of 
our calculations, obtained in the Minkowski space within the NIR, 
with those one can evaluate in the Euclidean space. In Table 1, 
we show the binding energies, in unit of the constituent mass m, 
for the first, B(1)/m, and the second, B(2)/m, excited states, cor-
responding to a ground state B(0)/m = 1.9 and different values 
of μ. The choice of such a large binding energy is motivated by 
the fact that strongly-bound states should be affected by large rela-
tivistic effects. First, we have verified that the values of αgr for the 
binding energy of the ground state of B(0)/m = 1.9, obtained with 
Euclidean- and Minkowski-space calculations are the same within 
our numerical accuracy. Then, we have computed the excited state 
energies given in Table 1, achieving a very satisfactory agreement 
between the results evaluated in the two spaces. As a remark on 
the numerical procedure, it should be pointed out that for values 
of μ/m smaller than 0.05 or B/m < 0.01 the convergence is quite 
slow, and it is needed an extrapolation of the results with respect 
to Ng , in order to accurately determine the eigenvalues.

It is also important to show the behavior of energy ratios, 
B(n)/B(0) with n ≥ 0, for small B/m and μ → 0. For a bound state 
composed for two spinless bosons exchanging a massless scalar 
boson, the corresponding relativistic expression in lower orders 
of α, as derived in [25], is

B(n) = m

4

α2

(n + 1)2

[
1 + 4α

π
lnα

]
+ ... (n ≥ 0). (11)

The first term is the non-relativistic limit. As verified in Fig. 1, 
where B(1)/B(0) and B(2)/B(0) are shown for small values of 
μ/m, the energy ratios are consistent with the non-relativistic 
limit. Moreover, the agreement for μ → 0 between the relativistic 
and non-relativistic eigenvalues is observed only for small values 
of n. Indeed, as binding energies increase relativistic effects be-
come larger and larger.
Fig. 1. Energy ratios B(n)/B(0) vs μ/m for the first (solid line with bullets) and 
second (dashed line with triangles) excited states. The symbols on the lines are the 
values obtained through Eq. (10), while the circle (n =1) and the triangle (n =2), 
at the origin, represent the corresponding non-relativistic limits, given by Eq. (11)
with Bnr(0)/m = 0.25α2.

3. Valence light-front wave function and momentum 
distributions

It is attractive to perform numerical comparisons of dynami-
cal quantities that in perspective could be useful for an experi-
mental investigation of actual interacting systems. In view of this, 
from the valence LF wave function introduced in Eq. (5) (see the 
next subsection for the numerical results), one can define both the 
probability distribution to find a constituent with LF longitudinal 
fraction ξ = p+

i /P+ , given by

ϕ(ξ) = 1

2(2π)3

1

ξ(1 − ξ)

∫
d2k⊥

[
ψ(ξ,k⊥)

]2
, (12)

and the probability distribution to find a constituent with LF trans-
verse momentum k⊥ = |k⊥|, that reads

P(k⊥) = 1

4(2π)3

1∫
0

dξ

ξ(1 − ξ)

2π∫
0

dθ
[
ψ(ξ,k⊥)

]2
. (13)

Both LF distributions are normalized to the probability of the va-
lence component, once the BS amplitude itself is properly normal-
ized (see Ref. [26] for a general discussion and Ref. [13] for the 
application within the NIR). Such a probability yields the proba-
bility to find the valence contribution in the LF Fock expansion of 
the interacting two-scalar state (see, e.g., [18,12,27]). As a matter 
of fact, one has

P val =
1∫

0

dξ ϕ(ξ) =
∞∫

0

dk⊥ P(k⊥). (14)

Notice that k⊥ can be associated with the intrinsic transverse mo-
mentum, in the frame where p⊥ = 0, which is allowed by the 
covariance of our description.

Although we have discussed the issue of the proper normaliza-
tion of the valence state, in what follows we are interested in the 
overall 3D structure of the valence wave function, and therefore 
we have simply adopted an arbitrary normalization.

3.1. Momentum space valence wave function for excited states

In Figs. 2 and 3, we present the LF wave function of the 
first (left panels) and second (right panels) excited states, corre-
sponding to the case μ/m = 0.1, αgr = 6.437, B(1)/m = 0.22 and 
B(2)/m = 0.05 (see Table 1). As clearly shown, the wave function 
displays the typical feature of the first and second excited states, 
i.e. one and two nodes, respectively.



134 C. Gutierrez et al. / Physics Letters B 759 (2016) 131–137
Fig. 2. The valence wave functions vs ξ with fixed values of (k⊥/m)2, for the first (left panel) and second (right panel) excited states, with B(1)/m = 0.22 and B(2)/m = 0.05, 
respectively, obtained from (10) with μ/m = 0.1 and α = 6.437.

Fig. 3. The valence wave functions vs (k⊥/m)2 with fixed values of ξ , for the first (left panel) and second (right panel) excited states, with B(1)/m = 0.22 and B(2)/m = 0.05, 
respectively, obtained from (10) with μ/m = 0.1 and α = 6.437.

Fig. 4. The asymptotic k⊥ behaviors of the first (left frame) and second (right frame) excited states are shown, using the same label convention as given in Fig. 3.
By a direct inspection of the corresponding panels for the first 
excited state in Fig. 2 and for the second excited state in Fig. 3, 
one observes that, in the plane (ξ , k⊥/m), the node structure is 
present for (k⊥/m)2 < 1 and ξ < 0.75, and it is symmetric with 
respect to ξ = 1/2. In particular, the node structure moves toward 
ξ = 1/2 as k⊥ increases. Such a behavior can be naively expected 
when Cartesian three-momenta are adopted. As a matter of fact, 
the relation between Cartesian and LF components is

k2 = k2⊥ + m2

4ξ(1 − ξ)
− m2. (15)

If we assume a dependence upon k2 for the excited-state valence 
wave function (instead of the actual dependence upon ξ and k⊥ , 
separately), i.e. the same dependence found in phenomenologi-
cal valence wave functions widely adopted for describing ground 
states (as the one exploited in the discussion of the nucleon form 
factors in Ref. [18]), then the behaviors shown in Figs. 2 and 3, 
for the node structures and asymptotic behaviors of the states, be-
come quite reasonable. Indeed, the assumed excited-state valence 
wave functions have to display a node at a fixed value for k2, and 
therefore according to Fig. 2, for increasing k⊥ the variable ξ is 
constrained to approach 1/2 (i.e. the maximal value of ξ(1 − ξ)), 
in order to take (almost) constant k2. In conclusion, the correla-
tion between the LF components, ξ and k⊥ , in determining the 
node position can be largely explained by the rotational invariance 
of the phenomenological wave functions, if they depend upon k2. 
Notably, our calculations, genuinely in Minkowski space, actually 
confirm the overall expectation, based on a simple phenomeno-
logical Ansatz, that takes into account the rotational invariance. It 
should be reminded that, within a LF framework, the rotational in-
variance can be fully recovered only if the whole Fock expansion is 
considered [18]. We just add that the second node present in the 
right panel of Fig. 2 is hard to be seen given the scale of the plot.

From Eq. (5), one can obtain the asymptotic behaviors, k⊥ → ∞, 
of LF valence wave function for bound states, which are given by

ψ(ξ,k⊥) → k−4
⊥ C(ξ) . (16)

Such behavior is explicitly shown in Fig. 4 for the first two excited 
states (for ground-state, see Ref. [13]). It should be emphasized 
that independently of the value of ξ the wave function is damped 
as ∼ k4 .
⊥
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Fig. 5. Analytic structure of the BS amplitude in the complex plane of k0, showing 
the left- and right-hand cuts with the corresponding branch points kb

0± . The rotation 
path of the k0-integration contour is also shown for the transverse amplitude (17).

We close this subsection by discussing the equivalence of the 
transverse-momentum amplitudes in Minkowski and Euclidean 
spaces [15], respectively defined as

φT
M(k⊥) ≡

∫
dk0dk3�(k, p) = 1

2

∫
dk+dk−�(k, p) and (17)

φT
E (k⊥) ≡ i

∫
dk0

Edk3�E(kE , p), (18)

where �E(kE , p) is obtained from �(k, p) after applying the Wick 
rotation with k0 → ik0

E .
Notably, within NIR, one can easily prove that φT

M(k⊥) =
φT

E (k⊥), since one can exploit the explicit expression of the an-
alytic dependence of the BS amplitude, as given in Eq. (3). As a 
matter of fact, choosing the rest frame, one can straightforwardly 
see that the zeros of the Nakanishi denominator in the complex 
plane of k0 are given by:

k0 = − M z′

2
±

√
M2 z′ 2

4
+ γ ′ + κ2 + k2

3 + k2⊥ − iε , (19)

with z′ ∈ [−1, 1] and γ ′ ∈ [0, ∞]. Therefore, Eq. (3), as a function 
of complex k0, has two cuts, with branch-points at

kb
0± = ±

⎛
⎝ M

2
−

√
M2

4
+ κ2

⎞
⎠ . (20)

Recalling that κ2 is positive for bound states, one can show that 
at the branch-point kb

0+ a cut starts in the upper half-plane for 
Rek0 < 0, while at the branch-point kb

0− the cut is placed in the 
lower half-plane for positive values of Re k0, as shown in Fig. 5. 
If, in Eq. (17), where the Minkowski space is adopted, one consid-
ers the integration variable k0 as a complex one, i.e. k0 = |k0|eiθ , 
and rotates the angle θ up to 90◦ , no singularities are crossed (cf.
Fig. 5). Furthermore, assuming that the BS amplitude drops out 
fast enough for large complex |k0|, the Cauchy theorem holds and 
the Wick rotation [2] can be applied for computing the transverse 
amplitude. Namely, one can adopt a new integration path, along a 
purely imaginary k0, without dealing with any singular integrals. 
Consequently, the Minkowski and Euclidean transverse amplitudes, 
given by Eqs. (17) and (18) are formally equivalent.

The quantitative comparison for the cases μ/m = 0.1 and 0.5, 
with αgr taken from Table 1 (recall that one has always B(0)/m =
1.9), is presented in Fig. 6, showing a very good agreement be-
tween the transverse amplitudes, within the accuracy of our nu-
merical approaches. It is worth noticing that such an equivalence 
gives an additional confidence in NIR, since it should be empha-
sized that the Euclidean solutions of BSE are not obtained by as-
suming the NIR for BS amplitudes. Therefore the comparison in 
Fig. 6 should be considered as a further check of the reliability 
of the NIR itself, at least at the ladder level, besides the passed 
tests for both eigenvalues [6,7,9,13] and scattering lengths [14]. 
Moreover, Fig. 6 illustrates nice and general features of the trans-
verse amplitudes, that appear when the binding energies change. 
As a matter of fact, the position of the node in the first excited 
state moves toward smaller values of k⊥ as the binding energies 
decreases, i.e. from the left panel (B(1)/m = 0.22) to the right 
panel (B(1)/m = 0.0082). Analogously, the amplitudes themselves 
decrease more quickly in momentum space. Both features can be 
explained by the increase of size of the bound state when the 
binding energy decreases.

3.2. Valence LF wave function in the impact-parameter space

The transverse charge densities have been thoroughly discussed 
by Miller in Ref. [28], in close relation to the elastic electromag-
netic form factor. Indeed, the transverse charge density allows one 
to properly generalize the well-known non-relativistic relation be-
tween form factor and density to a relativistic framework. As a 
matter of fact, it turns out that for a composite bosonic state, the 
form factor F (Q 2 = −q2) can be written as

F (Q 2) =
∫

d2bρ(b)e−ib·q⊥ , (21)

where (i) the momentum transfer qμ is evaluated in the Breit 
frame with q+ = 0, (ii) Q 2 = q2⊥ , (iii) b belongs to the trans-
verse plane, called IP space [19], and (iv) ρ(b) is the IP density. 
It has to be pointed out that the IP density is the sum of contri-
butions from all the LF amplitudes of the Fock expansion of the 
interacting-system state, such that

ρ(b) = ρval(b) + higher Fock states densities · · · . (22)

The valence term is defined through the valence wave function in 
the IP space, φ(ξ, b), as follows

ρval(b) = 1

4π

1∫
0

dξ

ξ(1 − ξ)3
|φ(ξ,b/(1 − ξ))|2 , (23)

with normalization (cf. Eq. (14)) 
∫

d2b ρval(b) = P val . In Eq. (23), 
the IP-space valence wave function is the 2D Fourier transform of 
ψ(ξ, k⊥), given by

φ(ξ,b) =
∫

d2k⊥
(2π)2

ψ(ξ,k⊥)eik⊥·b, (24)

where φ(ξ, b) results to be symmetric with respect to 1 − 2ξ , as 
a consequence of the already discussed symmetry of g(γ , z; κ2)

under the transformation z → −z. Moreover, one can deduce the 
general behavior for large transverse separations, b = |b|, as illus-
trated in what follows. By performing the 2D Fourier transforma-
tion, the IP-space valence wave function can be written within NIR 
for the s-wave state as follows

φ(ξ,b) = ξ(1 − ξ)

4π
√

2
F (ξ,b), (25)

where

F (ξ,b) =
∞∫

0

dγ J0(b
√

γ )

×
∞∫

0

dγ ′ g(γ ′,1 − 2ξ ;κ2)

[γ + γ ′ + κ2 + (1/2 − ξ)2M2]2
, (26)

with Jn(x) the integer-order Bessel function for n = 0. Also the 
integration over γ can be analytically carried out, leading to
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Fig. 6. Transverse momentum amplitudes s-wave states, in Euclidean and Minkowski spaces, vs k⊥ , for both ground- and first-excited states, and two values of μ/m and αgr

(as indicated in the insets). The amplitudes φT
E and φT

M , arbitrarily normalized to 1 at the origin, are not easily distinguishable.

Fig. 7. The valence functions f (ξ, b) in the impact parameter space. Left panel: the ground state, corresponding to B(0) = 1.9m, μ = 0.1m and αgr = 6.437. Right panel: 
first-excited state, corresponding to B(1) = 0.22m, μ = 0.1m and αgr = 6.437.
F (ξ,b) = b

∞∫
0

dγ g(γ ,1 − 2ξ ;κ2)

×
K1

(
b
√

γ + κ2 + (1/2 − ξ)2M2
)

√
γ + κ2 + (1/2 − ξ)2M2

, (27)

where K1(x) is the modified Bessel function of the second kind. 
The function F (ξ, b) exponentially drops out for b → ∞. Such a 
behavior can be understood by a close analysis of Eq. (27). First, 
from the physically-motivated request [28] that φ(ξ, b) is finite for 
b → 0 (see also [13]), such that

φ(ξ,b = 0) = ξ (1 − ξ)

4π
√

2

∞∫
0

dγ
g(γ ,1 − 2ξ ;κ2)

γ + κ2 + (1/2 − ξ)2M2
< ∞ ,

(28)

one can deduce that g(γ , 1 − 2ξ ; κ2) must vanish for γ → ∞. 
Therefore, the relevant interval of γ in the integral (27) can be 
taken effectively finite. Exploiting such an observation, one can ex-
tract the driving exponential fall-off of F (ξ, b) in the asymptotic 
limit b → ∞. In this limit K1(x) reads:

K1(x)|x→∞ →
( π ) 1

2
e−x . (29)
2 x
The leading exponential behavior in the integral (27) comes from 
values of e−b

√
γ +κ2+(ξ−1/2)2 M2

[as seen from Eq. (29)] with γ
close to 0. Therefore,

F (ξ,b)|b→∞ → e−b
√

κ2+(ξ−1/2)2 M2
f (ξ,b), (30)

where the exponential fall-off is singled out and the reduced func-
tion f (ξ, b) should decrease more smoothly for large values of b. 
It has to be pointed out that an exponential fall-off is expected 
for bound states, since it is generated by short range interactions, 
in analogy with the behavior found for the non-relativistic two-
dimensional case. The above feature has been investigated by ac-
tually calculating F (ξ, b), and in turn f (ξ, b), for both ground and 
first-excited states. In Fig. 7, f (ξ, b) is presented for the ground 
(left) and first-excited (right) states. In both cases, we have μ/m =
0.1 and αgr = 6.437. It is worth noting in the right panel the nice 
node structure of the excited state in the whole {1 − 2ξ, b} plane. 
The tail of the function F (ξ, b) with respect to b is studied in more 
detail through f (ξ, b), putting in evidence that the steep fall-off of 
the valence wave function, which is largely taken into account by 
the leading exponential term, included in the definition (30). This 
suggests at most a polynomial behavior in f (ξ, b), which is clearly 
seen in the figure for b < 15/m.



C. Gutierrez et al. / Physics Letters B 759 (2016) 131–137 137
4. Conclusions and perspectives

We have investigated both spectrum and excited states of the 
scalar Bethe–Salpeter equation, in ladder approximation, by get-
ting, for the first time, solutions directly in Minkowski space, 
within the Nakanishi integral representation of the BS amplitude. 
A basic ingredient of our approach is the exact projection of the 
BSE onto the null-plane (see, e.g. [15,16]), that allows one to mas-
ter in a simple and very effective way the singularities typical 
of the BS formalism. We have considered an s-wave interacting 
system composed by two massive scalars and interacting through 
a massive scalar, extending the study of the ground state per-
formed in Ref. [13] (see Ref. [9] for an analogous study within 
the explicitly-covariant LF approach), and carefully analyzing the 
valence wave function both in Minkowski and impact-parameter 
spaces.

Within the numerical accuracy of our approach, we have found 
a finite number of excited states for non-zero exchanged-scalar 
mass, and we have successfully compared our results with the cor-
responding ones obtained in the Euclidean space, where obviously 
NIR is not assumed. A detailed study of the valence wave func-
tion structure has been carried out in the plane (ξ, k⊥), showing 
the expected node structure of the first and second excited states. 
Furthermore, our investigation, both analytic and quantitative, of 
the transverse-momentum amplitude has allowed to remarkably 
show the equivalence of the quantity evaluated both in Euclidean 
and Minkowski spaces. This further strengthens the reliability of 
the approach based on NIR for solving the BSE, already applied to 
fermionic systems [11], kernels beyond the ladder one [10] and in 
the zero-energy scattering case [14]. Finally, we also explored the 
asymptotic properties of the impact-parameter space valence wave 
function for large transverse distances, where an exponential fall-
off was singled out (similar to the non-relativistic case in the 3D 
Euclidean space) and quantitatively tested for the excited states.

In perspective, the present study encourages the extension of 
the approach based on the NIR to excited states of actual physical 
systems, as well as to explore results obtained for other dynam-
ical quantities within a wider and deeper comparison between 
Minkowski and Euclidean calculations.
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