17 research outputs found

    Born--Oppenheimer decomposition for quantum fields on quantum spacetimes

    Full text link
    Quantum Field Theory on Curved Spacetime (QFT on CS) is a well established theoretical framework which intuitively should be a an extremely effective description of the quantum nature of matter when propagating on a given background spacetime. If one wants to take care of backreaction effects, then a theory of quantum gravity is needed. It is now widely believed that such a theory should be formulated in a non-perturbative and therefore background independent fashion. Hence, it is a priori a puzzle how a background dependent QFT on CS should emerge as a semiclassical limit out of a background independent quantum gravity theory. In this article we point out that the Born-Oppenheimer decomposition (BOD) of the Hilbert space is ideally suited in order to establish such a link, provided that the Hilbert space representation of the gravitational field algebra satisfies an important condition. If the condition is satisfied, then the framework of QFT on CS can be, in a certain sense, embedded into a theory of quantum gravity. The unique representation of the holonomy-flux algebra underlying Loop Quantum Gravity (LQG) violates that condition. While it is conceivable that the condition on the representation can be relaxed, for convenience in this article we consider a new classical gravitational field algebra and a Hilbert space representation of its restriction to an algebraic graph for which the condition is satisfied. An important question that remains and for which we have only partial answers is how to construct eigenstates of the full gravity-matter Hamiltonian whose BOD is confined to a small neighbourhood of a physically interesting vacuum spacetime.Comment: 38 pages, 2 figure

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Identifying Users and Use of (Electric-) Free-Floating Carsharing in Berlin and Munich

    No full text
    In the last decade the attractiveness of carsharing increased rapidly, not least because of the introduction of free-floating carsharing in 2009. In those kind of carsharing systems the rental vehicle does not need to be returned to a particular station but can be parked in any part of the operating area. There have been hardly any empirical findings on the use and effects of free-floating carsharing so far. Thus, this work presents results of user surveys (onCar questionnaire, online survey and discussions with focus groups) with customers of the free-floating carsharing operator DriveNow. Next to the analysis of the user the usage of such a carsharing system is evaluated by booking data of trips in Berlin and Munich from 2013. The Getis-Ord-Gi*-test is used for analyzing the spatial distribution of booking starts. The operator launched 60 electric vehicles in the fleet that makes an additional analysis for this special kind of free-floating carsharing possible. All approaches want to draw an informative picture of a typical free-floating carsharing user on the one side and about how this new mobility service is used in urban areas on the other side. By the discussions in the focus groups one obtains furthermore an impression about the acceptance of electric vehicles by the customers. One clear conclusion is that free-floating carsharing is mostly used by young well-educated people with an over-average income. Two main purposes of the trips are the way home and leisure time activities. The system is well-working in city or district centers while there are considerably less bookings in peripheral areas. This is also correct for electric free-floating carsharing that is principally accepted by the customers
    corecore