160 research outputs found

    Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    Get PDF
    © 2015 AIP Publishing LLC. A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.H.F. gratefully acknowledges China Scholarship Council (CSC) for financial support and André Schirmeisen for the data of Ni film. A.G.-M. and B.C. acknowledge funding from Spanish Ministry of Economy and Competitiveness through grants “FUNCOAT” CONSOLIDER CSD2008-00023 and “MAPS” MAT2011-29194-C02-01. J.C.C. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (Contract No. FIS2011-28851-C02-01) and from the Comunidad de Madrid (Contract No. S2013/MIT-2740). E.M.A. and M.G. acknowledge financial support by the European Union under the project CosmoPHOS with the number “3100337”.Peer Reviewe

    Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    Get PDF
    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin filmsH.F. gratefully acknowledges China Scholarship Council (CSC) for financial support and André Schirmeisen for the data of Ni film. A.G.-M. and B.C. acknowledge funding from Spanish Ministry of Economy and Competitiveness through grants “FUNCOAT” CONSOLIDER CSD2008-00023 and “MAPS” MAT2011-29194-C02-01. J.C.C. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (Contract No. FIS2011-28851-C02-01) and from the Comunidad de Madrid (Contract No. S2013/MIT- 2740). E.M.A. and M.G. acknowledge financial support by the European Union under the project CosmoPHOS with the number “310337

    Elementary transitions and magnetic correlations in two-dimensional disordered nanoparticle ensembles

    Full text link
    The magnetic relaxation processes in disordered two-dimensional ensembles of dipole-coupled magnetic nanoparticles are theoretically investigated by performing numerical simulations. The energy landscape of the system is explored by determining saddle points, adjacent local minima, energy barriers, and the associated minimum energy paths (MEPs) as functions of the structural disorder and particle density. The changes in the magnetic order of the nanostructure along the MEPs connecting adjacent minima are analyzed from a local perspective. In particular, we determine the extension of the correlated region where the directions of the particle magnetic moments vary significantly. It is shown that with increasing degree of disorder the magnetic correlation range decreases, i.e., the elementary relaxation processes become more localized. The distribution of the energy barriers, and their relation to the changes in the magnetic configurations are quantified. Finally, some implications for the long-time magnetic relaxation dynamics of nanostructures are discussed.Comment: 19 pages, 6 figure

    Towards spectrally selective catastrophic response

    Get PDF
    We study the large-amplitude response of classical molecules to electromagnetic radiation, showing the universality of the transition from linear to nonlinear response and breakup at sufficiently large amplitudes. We demonstrate that a range of models, from the simple harmonic oscillator to the successful Peyrard-Bishop-Dauxois type models of DNA, which include realistic effects of the environment (including damping and dephasing due to thermal fluctuations), lead to characteristic universal behavior: formation of domains of dissociation in driving force amplitude-frequency space, characterized by the presence of local boundary minima. We demonstrate that by simply following the progression of the resonance maxima in this space, while gradually increasing intensity of the radiation, one must necessarily arrive at one of these minima, i.e., a point where the ultrahigh spectral selectivity is retained. We show that this universal property, applicable to other oscillatory systems, is a consequence of the fact that these models belong to the fold catastrophe universality class of Thom's catastrophe theory. This in turn implies that for most biostructures, including DNA, high spectral sensitivity near the onset of the denaturation processes can be expected. Such spectrally selective molecular denaturation could find important applications in biology and medicine

    Scaling behavior of the dipole coupling energy in two-dimensional disordered magnetic nanostructures

    Full text link
    Numerical calculations of the average dipole-coupling energy Eˉdip\bar E_\mathrm{dip} in two-dimensional disordered magnetic nanostructures are performed as function of the particle coverage CC. We observe that Eˉdip\bar E_\mathrm{dip} scales as EˉdipCα\bar E_\mathrm{dip}\propto C^{\alpha^*} with an unusually small exponent α0.8\alpha^*\simeq 0.8--1.0 for coverages C20C\lesssim20%. This behavior is shown to be primarly given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α\alpha^* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C20C\gtrsim20% we obtain EˉdipCα\bar E_\mathrm{dip}\propto C^\alpha with α=3/2\alpha=3/2, in agreement with the straighforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α1.0\alpha^* \simeq 1.0) and strongly interacting (α0.8\alpha^* \simeq 0.8) particle ensembles as function of coverage.Comment: accepted for publication in Phys.Rev.

    Use of Gold Nanoparticles To Enhance Capillary Electrophoresis

    Get PDF
    We describe here the use of gold nanoparticles to manipulate the selectivity between solutes in capillary electrophoresis. Two different gold-based nanoparticles were added to the run buffer. In one case, the nanoparticles were stabilized with citrate ions, but in another study, the gold nanoparticles were capped with mercaptopropionate ions (thiol-stablized). Citrate-stabilized gold nanoparticles were used in conjunction with capillaries treated with poly(diallyldimethylammonium chloride) (PDADMAC). The positively charged PDADMAC layer on the capillary walls adsorbs the negatively charged gold nanoparticles. The model solutes that were used to study the effect of the presence of the citrate-stabilized gold nanoparticles are structural isomers of aromatic acids and bases. The presence of the PDADMAC layer and the PDADMAC plus the gold nanoparticles changes both the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities influence the observed selectivities and the separations of the system. Thiol-stabilized gold nanoparticles were used without PDADMAC in the capillary. The model solutes studied in this part are various aromatic amines. In this case as well, the presence of the gold nanoparticles modifies the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities are manifested in selectivity alterations. The largest change in the selectivities occurs at low concentrations of the gold nanoparticles in the run buffer. The presence of nanoparticles improves the precision of the analysis and increases the separation efficiency. Nanodispersions have attracted extensive attention in various fields of physics, biology, and chemistry. [1][2][3][4][5] Physicists and chemists are intrigued by the gradual transition of the nanomaterial properties from molecule-like to those of solid-state properties by a change of a single variable, the particle size. This property has practical and future applications for nonlinear optics and electronics. The large surface area of nanomaterials intrigues chemical engineers and catalysis scientists. Surprisingly, very little research has been devoted to the application of nanoparticles for chemical separation. In this work, we demonstrate the utility and versatility of organically modified gold nanoparticles in capillary electrophoresis (CE) separations. The nanoparticles serve as large surface area platforms for organofunctional groups that interact with the capillary surface, the analytes, or both. Thus, the apparent mobilities of target analytes, as well as the electroosmotic flow, can be altered leading to enhanced selectivities. Separation of various benzene derivatives demonstrates these capabilities. Metallic nanodispersions can be prepared in aqueous and organic solvents using diverse procedures. 1,2,6-9 Nanodispersions can be stabilized in organic solvents by the solvent itself, 10 by the addition of long chain surfactants, 11,12 or by specific ligands. 13 Stabilization of metal nanodispersions in aqueous solutions is somewhat more complicated. Several successful stabilization methods are available that are based on capping of the metal nanoparticles (e.g., citrate, 6 3-mercaptopropionate, 1
    corecore