4,942 research outputs found

    A comparison between direct and pan-derived measurements of the isotopic composition of atmospheric waters

    Get PDF
    The stable isotopes of water can be used to examine and quantify the contribution to atmospheric moisture from evaporation, transpiration and surface-waters. However, obtaining extensive and ongoing time series data of the isotopic composition of atmospheric moisture has been difficult. Presented here is an alternate method using an isotope mass balance approach to estimate the isotopic composition of atmospheric moisture using water samples collected from class A evaporation pans. While this evaporation pan method does not provide the high-resolution time series data that can be obtained from an isotope analyser taking in-situ measurements of atmospheric moisture, the method is relatively simple and inexpensive to set-up and maintain. In this preliminary investigation, a comparison between the isotopic composition of atmospheric moisture estimated from the evaporation pan method and in-situ measurements of the isotopic composition of water vapour using a Fourier Transform Infrared (FTIR) spectrometer deployed at the Lucas Heights weather station in New South Wales is undertaken. Through comparison of the two series of hydrogen isotope data, an assessment of the evaporation pan method can be made. Although there was some agreement between the isotopic composition of vapour measured by the FTIR spectrometer and the estimation for the atmospheric moisture (R2 = 0.49), the comparison is sensitive to climatic parameters that vary significantly within a 24-hour period such as the relative humidity of air and the air and pan temperatures. Inverting the model to use the FTIR spectrometer measurements at an hourly resolution improved the performance of the model (R2 =0.57). However, this also revealed that the model produced more depleted values of the evaporation pan water isotopes than those observed. In contrast, there was a variable relationship between the modelled and observed isotope values of atmospheric moisture. These conflicting results will need to be resolved before the evaporation pan method is broadly applied in isotope hydrology. © 2011 The Modelling and Simulation Society of Australia and New Zealand Inc

    Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene

    Get PDF
    With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms

    Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson's disease.

    Get PDF
    BACKGROUND: Neuronal iron accumulation is thought to be relevant to the pathogenesis of Parkinson's disease (PD), although the mechanism remains elusive. We hypothesized that neuronal iron uptake may be stimulated by functional mitochondrial iron deficiency. OBJECTIVE: To determine firstly whether the mitochondrial toxin, 1-methyl-4-phenylpyridinium iodide (MPP(+)), results in upregulation of iron-import proteins and transporters of iron into the mitochondria, and secondly whether similar changes in expression are induced by toxins with different mechanisms of action. METHODS: We used quantitative PCR and Western blotting to investigate expression of the iron importers, divalent metal transporter, transferrin receptor 1 and 2 (TfR1 and TfR2) and mitoferrin-2 and the iron exporter ferroportin in differentiated SH-SY5Y cells exposed to three different toxins relevant to PD, MPP(+), paraquat (a free radical generator) and lactacystin (an inhibitor of the ubiquitin-proteasome system (UPS)). RESULTS: MPP(+) resulted in increased mRNA and protein levels of genes involved in cellular iron import and transport into the mitochondria. Similar changes occurred following exposure to paraquat, another inducer of oxidative stress. Lactacystin also resulted in increased TfR1 mRNA levels, although the other changes were not found. CONCLUSION: Our results support the hypothesis of a functional mitochondrial iron deficit driving neuronal iron uptake but also suggest that differences exist in neuronal iron handling induced by different toxins

    PMH1: RECENT TRENDS IN THE COST OF CARE FOR PATIENTS WITH SCHIZOPHRENIA

    Get PDF
    • …
    corecore