1,289 research outputs found

    Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls

    Get PDF
    AbstractStudy regionThis study is based on the rapidly developing Athabasca Oil Sands region, northeastern Alberta.Study focusHydrograph separation using stable isotopes of water is applied to partition streamflow sources in the Athabasca River and its tributaries. Distinct isotopic labelling of snow, rain, groundwater and surface water are applied to estimate the contribution of these sources to streamflow from analysis of multi-year records of isotopes in streamflow.New hydrological insights for the regionThe results provide new insight into runoff generation mechanisms operating in six tributaries and at four stations along the Athabasca River. Groundwater, found to be an important flow source at all stations, is the dominant component of the hydrograph in three tributaries (Steepbank R., Muskeg R., Firebag R.), accounting for 39–50% of annual streamflow. Surface water, mainly drainage from peatlands, is also found to be widely important, and dominant in three tributaries (Clearwater R., Mackay R., Ells R.), accounting for 45–81% of annual streamflow. Fairly limited contributions from direct precipitation illustrate that most snow and rain events result in indirect displacement of pre-event water by fill and spill mechanisms. Systematic shifts in regional groundwater to surface-water ratios are expected to be an important control on spatial and temporal distribution of water quality parameters and useful for evaluating the susceptibility of rivers to climate and development impacts

    Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    Get PDF
    The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices

    Dystrophin and utrophin: the missing links!

    Get PDF
    AbstractThere is considerable sequence homology between dystrophin and utrophin, both at the protein and DNA level, and consequently it was assumed that their domain structures and functions would be similar. As more of the detailed biochemical and cell biological properties of these two proteins become known, so it becomes clear that there are subtle if not significant differences between them. We review recent findings and present new hypotheses into the structural and functional properties of the actin-binding domain, central coiled-coil region and regulatory/membrane protein-binding regions of dystrophin and utrophin

    In silico design of context-responsive mammalian promoters with user-defined functionality

    Get PDF
    Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation

    First-principles calculations of 2x2 reconstructions of GaN(0001) surfaces involving N, Al, Ga, In, and as atoms

    Get PDF
    The ab initio studies presented here employed a pseudopotential-plane-wave method in order to obtain the minimum-energy configurations of various 22 GaN0001 surfaces involving N, Al, Ga, In, and As atoms. Comparison of the various possible reconstructions allows predictions to be made regarding the most energetically favorable configurations. Such comparisons depend on the value of the effective chemical potential of each atomic species, which can be related directly to experimental growth conditions. The most stable structure as a function of chemical potentials is determined. Based on these results we have characterized the effect of N in the adlayer surface and the stability dependence with number of substitutions as a function of the model employed and the possible surfactant character of some of the added atoms. Surface phase diagrams as a function of the chemical potential have been calculated to show the phase transition between the different reconstructions

    Distributions of fatigue damage from data-driven strain prediction using Gaussian process regression

    Get PDF
    Fatigue is a leading cause of structural failure; however, monitoring and prediction of damage accumulation remains an open problem, particularly in complex environments where maintaining sensing equipment is challenging. As a result, there is a growing interest in virtual loads monitoring, or inferential sensing, particularly for predicting strain in areas of interest using machine learning methods. This paper pursues a probabilistic approach, relying on a Gaussian process (GP) regression, to produce both strain predictions and a predictive distribution of the accumulated fatigue damage in a given time period. Here, the fatigue distribution is achieved via propagation of successive draws from the posterior GP through a rainflow count. The establishment of such a distribution crucially accounts for uncertainty in the predictive model and will form a valuable element in any probabilistic risk assessment. For demonstration of the method, distributions for predicted fatigue damage in an aircraft wing are produced across 84 flights. The distributions provide a robust measure of predicted damage accumulation and model uncertainty

    Origin of Magnetite Crystals in Martian Meteorite ALH84001 Carbonate Disks

    Get PDF
    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks which are believed to have precipitated approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these Fe3O4 are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of Fe3O4 and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded [1]. We focus this discussion on the composition of ALH84001 magnetites and then compare these observations with those from our thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios

    Whole synthetic pathway engineering of recombinant protein production

    Get PDF
    The output from protein biomanufacturing systems is a function of total host cell biomass synthetic capacity and recombinant protein production per unit cell biomass. In this study, we describe how these two properties can be simultaneously optimized via design of a product-specific combination of synthetic DNA parts to maximize flux through the protein synthetic pathway and the use of a host cell chassis with an increased capability to synthesize both cell and product biomass. Using secreted alkaline phosphatase (SEAP) production in Chinese hamster ovary cells as our example, we demonstrate how an optimal composition of input components can be assembled from a minimal toolbox containing rationally designed promoters, untranslated regions, signal peptides, product coding sequences, cell chassis, and genetic effectors. Product titer was increased 10-fold, compared with a standard reference system by (a) identifying genetic components that acted in concert to maximize the rates of SEAP transcription, translation, and translocation, (b) selection of a cell chassis with increased biomass synthetic capacity, and (c) engineering the host cell factory's capacity for protein folding and secretion. This whole synthetic pathway engineering process to design optimal expression cassette-chassis combinations should be applicable to diverse recombinant protein and host cell-type contexts

    The role of macrophages in Staphylococcus aureus infection

    Get PDF
    Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome
    • …
    corecore