4,361 research outputs found

    On Extracting Mechanical Properties from Nanoindentation at Temperatures up to 1000∘^{\circ}C

    Full text link
    Alloyed MCrAlY bond coats, where M is usually cobalt and/or nickel, are essential parts of modern turbine blades, imparting environmental resistance while mediating thermal expansivity differences. Nanoindentation allows the determination of their properties without the complexities of traditional mechanical tests, but was not previously possible near turbine operating temperatures. Here, we determine the hardness and modulus of CMSX-4 and an Amdry-386 bond coat by nanoindentation up to 1000∘^{\circ}C. Both materials exhibit a constant hardness until 400∘^{\circ}C followed by considerable softening, which in CMSX-4 is attributed to the multiple slip systems operating underneath a Berkovich indenter. The creep behaviour has been investigated via the nanoindentation hold segments. Above 700∘^{\circ}C, the observed creep exponents match the temperature-dependence of literature values in CMSX-4. In Amdry-386, nanoindentation produces creep exponents very close to literature data, implying high-temperature nanoindentation may be powerful in characterising these coatings and providing inputs for material, model and process optimisations

    The Basic Course at U.S. Colleges and Universities: V

    Get PDF
    This paper reports the results of a survey undertaken to determine the nature of the basic course in speech as it is now taught at United States colleges and universities, and to identify important trends in instruction of the basic communication course. It appears that enrollment in the basic course is increasing. Findings are also reported concerning the orientation taken in the basic course, along with information on instructional methods used and administrative concerns connected with the basic course. The various implications of the findings are discussed

    What should an index of school segregation measure?

    Get PDF
    The article aims to make a methodological contribution to the education segregation literature, providing a critique of previous measures of segregation used in the literature, as well as suggesting an alternative approach to measuring segregation. Specifically, the paper examines Gorard, Fitz and Taylor's finding that social segregation between schools, as measured by free school meals (FSM) entitlement, fell significantly in the years following the 1988 Education Reform Act. Using Annual Schools Census data from 1989 to 2004, the paper challenges the magnitude of their findings, suggesting that the method used by Gorard et al. seriously overstates the size of the fall in segregation. We make the case for a segregation curve approach to measuring segregation, where comparisons of the level of segregation are possible regardless of the percentage FSM eligibility. Using this approach, we develop a new method for describing both the level and the location of school segregation

    Dynamic plantar loading index detects altered foot function in individuals with rheumatoid arthritis but not changes due to orthotic use

    Get PDF
    Background Altered foot function is common in individuals with rheumatoid arthritis. Plantar pressure distributions during gait are regularly assessed in this patient group; however, the association between frequently reported magnitude-based pressure variables and clinical outcomes has not been clearly established. Recently, a novel approach to the analysis of plantar pressure distributions throughout stance phase, the dynamic plantar loading index, has been proposed. This study aimed to assess the utility of this index for measuring foot function in individuals with rheumatoid arthritis.Methods Barefoot plantar pressures during gait were measured in 63 patients with rheumatoid arthritis and 51 matched controls. Additionally, 15 individuals with rheumatoid arthritis had in-shoe plantar pressures measured whilst walking in standardized footwear for two conditions: shoes-only; and shoes with prescribed custom foot orthoses. The dynamic plantar loading index was determined for all participants and conditions. Patient and control groups were compared for significant differences as were the shod and orthosis conditions.Findings The patient group was found to have a mean index of 0.19, significantly lower than the control group's index of 0.32 (p > 0.001, 95% CI [0.054, 0.197]). No significant differences were found between the shoe-only and shoe plus orthosis conditions. The loading index was found to correlate with clinical measures of structural deformity.Interpretation The dynamic plantar loading index may be a useful tool for researchers and clinicians looking to objectively assess dynamic foot function in patients with rheumatoid arthritis; however, it may be unresponsive to changes caused by orthotic interventions in this patient group.</p

    Insights From the Field: Project Execution Success and Failure

    Get PDF
    Project execution plays a decisive role in project success, but past research did not focus on the project manager’s perspective of what needs to be accomplished to achieve success. In this study, the authors used qualitative techniques to look for reoccurring themes related to 44project managers’ responses to interview questions associated with successful project execution and failed project execution. The study found that despite the project management profession growth, professional associations’ efforts, and their professional development endeavors, project management execution seems to be concerned with what has happened versus what is happening in a project. This study provides a conceptual framework for project execution success strategies that have implications for project management training and mentoring

    Utilizing the R/V Marcus G. Langseth’s streamer to measure the acoustic radiation of its seismic source in the shallow waters of New Jersey’s continental shelf

    Get PDF
    Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth’s towed hydrophone streamer to estimate the acoustic radiation of the ship’s seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship’s multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey

    Local synthesis of sex hormones:are there consequences for the ocular surface and dry eye?

    Get PDF
    Sex hormones are associated with the physiology and pathophysiology of almost all organs in the body, as well as most diseases. Interest in the associations between sex hormones and ocular tissues has increased in recent years. Androgens may have a positive effect on dry eye, whereas the effects of oestrogen on ocular conditions remain unclear. Intracrinology, the local synthesis and metabolism of hormones that is unique to humans, is of relevance to the eye and may help to explain why studies of the relationship between oestrogens and dry eye signs and symptoms are inconclusive. Knowledge of the pathways of hormone formation and metabolism is crucial to understanding the pathogenesis of ocular disease including dry eye. This review examines the mechanisms of steroidal sex hormone biosynthesis and reviews the significance of locally produced sex hormones, with a focus on ocular surface tissues. Much of the current literature is based on animal studies, which may not be transferable to humans due to the absence of intracrine production in animals. A large proportion of the human studies investigate systemic hormone levels rather than local levels. There is subsequently a need for additional studies to provide a better understanding of the local production of sex hormones within the human eye and ocular surface and to clarify the relationships between ocular levels of sex hormones and conditions including dry eye

    Intra-session and inter-day reliability of the Myon 320 electromyography system during sub-maximal contractions

    Get PDF
    Electromyography systems are widely used within the field of scientific and clinical practices. The reliability of these systems are paramount when conducting research. The reliability of Myon 320 Surface Electromyography System is yet to be determined. This study aims to determine the intra-session and inter-day reliability of the Myon 320 Surface Electromyography System. Muscle activity from fifteen participants was measured at the anterior deltoid muscle during a bilateral front raise exercise, the vastus lateralis muscle during a squat exercise and the extensor carpi radialis brevis (ECRB) muscle during an isometric handgrip task. Intra-session and inter-day reliability was calculated by intraclass correlation coefficient, standard error of measurement and coefficient of variation (CV). The normalized root mean squared (RMS) surface electromyographic signals produced good intra-session and inter-day testing intraclass correlation coefficient values (range: 0.63-0.97) together with low standard error of measurement (range: 1.49-2.32) and CV (range: 95% Confidence Interval = 0.36-12.71) measures for the dynamic-and-isometric contractions. The findings indicate that the Myon 320 Surface Electromyography System produces good to fair reliability when examining intra-session and inter-day reliability. Findings of the study provide evidence of the reliability of electromyography between trials which is essential during clinical testing.</p

    Microcompression experiments on glasses ‐ strain rate sensitive cracking behavior

    Get PDF
    Figure 11 – microcompression experiments on glasses showing stable crack growth (a) and reversible deformation (b) It is well known that the mechanical properties of glasses are closely related to their atomic structure. The exact structure-property-relationship, however, is only poorly understood even for fundamental mechanisms like shear and densification. Nanomechanical test methods like micropillar compression and nano indentation can help fill this gap. In this study a sodium-boro-silicate glass is quenched from different temperatures to induce changes in the atomic structure. Micropillar compression was used to introduce plastic deformation into these glasses at room temperature under a uniaxial stress state. By changing the strain rate it is shown that deformation shifts from completely reversible deformation, to stable crack growth, and finally brittle failure. It is shown that by changing the glass structure, the strain rates corresponding to these deformation regimes are shifted. Finally, the occurrence of shear and densification is discussed. These findings are analysed against the background of the glass structure. Please click Additional Files below to see the full abstract

    Deformation of micrometer and mm-sized Fe2.4wt.%Si single- and bi-crystals with a high angle grain boundary at room temperature

    Full text link
    Plasticity in body-centred cubic (BCC) metals, including dislocation interactions at grain boundaries, is much less understood than in face-centred cubic (FCC) metals. At low temperatures additional resistance to dislocation motion due to the Peierls barrier becomes important, which increases the complexity of plasticity. Iron-silicon steel is an interesting, model BCC material since the evolution of the dislocation structure in specifically-oriented grains and at particular grain boundaries have far-reaching effects not only on the deformation behaviour but also on the magnetic properties, which are important in its final application as electrical steel. In this study, two different orientations of micropillars (1, 2, 4 microns in diameter) and macropillars (2500 microns) and their corresponding bi crystals are analysed after compression experiments with respect to the effect of size on strength and dislocation structures. Using different experimental methods, such as slip trace analysis, plane tilt analysis and cross-sectional EBSD, we show that direct slip transmission occurs, and different slip systems are active in the bi-crystals compared to their single-crystal counterparts. However, in spite of direct transmission and a very high transmission factor, dislocation pile-up at the grain boundary is also observed at early stages of deformation. Moreover, an effect of size scaling with the pillar size in single crystals and the grain size in bi-crystals is found, which is consistent with investigations elsewhere in FCC metals
    • 

    corecore