1,092 research outputs found

    Notes on contributors

    Get PDF
    The gas-phase complex UO2(TMOGA)(2)(2+) (TMOGA = tetramethyl-3-oxa-glutaramide) prepared by electrospray ionization was characterized by infrared multiphoton dissociation (IRMPD) spectroscopy. The IRMPD spectrum from 700-1800 cm(-1) was interpreted using a computational study based on density functional theory. The predicted vibrational frequencies are in good agreement with the measured values, with an average deviation of only 8 cm(-1) (<1%) and a maximum deviation of 21 cm(-1) (<2%). The only IR peak assigned to the linear uranyl moiety was the asymmetric v(3) mode, which appeared at 965 cm(-1) and was predicted by DFT as 953 cm(-1). This v(3) frequency is red-shifted relative to bare uranyl, UO22+, by ca. 150 cm(-1) due to electron donation from the TMOGA ligands. Based on the degree of red-shifting, it is inferred that two TMOGA oxygen-donor ligands have a greater effective gas basicity than the four monodentate acetone ligands in UO2(acetone)(4)(2+). The uranyl v(3) frequency was also computed for uranyl coordinated by two TMGA ligands, in which the central O-ether, of TMOGA has been replaced by CH2. The computed v(3) for UO2(TMGA)(2)(2+), 950 cm(-1), is essentially the same as that for UO2(TMOGA)(2)(2+), suggesting that electron donation to uranyl from the ether of TMOGA is minor. The computed v(3) asymmetric stretching frequencies for the three actinyl complexes, UO2(TMOGA)(2)(2+), NpO2(TMOGA)(2)(2+) and PuO2(TMOGA)(2)(2+), are comparable. This similarity is discussed in the context of the relationship between v(3) and intrinsic actinide-oxygen bond energies in actinyl complexes

    The bidirectional interaction of the gut microbiome and the innate immune system: Implications for chemotherapy‐induced gastrointestinal toxicity

    Get PDF
    Online 28 Aug 2018Chemotherapy‐induced gastrointestinal toxicity (CIGT) occurs in up to 80% of all patients undergoing cancer treatment, and leads to symptoms such as diarrhoea, abdominal bleeding and pain. There is currently limited understanding of how to predict an individual patient's risk of CIGT. It is believed the gut microbiome and its interactions with the host's innate immune system plays a key role in the development of this toxicity and potentially other toxicities, however comprehensive bioinformatics modelling has not been rigorously performed. The innate immune system is strongly influenced by the microbial environment and vice‐versa. Ways this may occur include the immune system controlling composition and compartmentalisation of the microbiome, the microbiome affecting development of antigen‐presenting cells, and finally, the NLRP6 inflammasome orchestrating the colonic host‐microbiome interface. This evidence calls into question the role of pre‐treatment risk factors in the development of gastrointestinal toxicity after chemotherapy. This review aims to examine evidence of a bidirectional interaction between the gut microbiome and innate immunity, and how these interactions occur in CIGT. In the future, knowledge of these interactions may lead to improved personalised cancer medicine, predictive risk stratification methods and the development of targeted interventions to reduce, or even prevent, CIGT severity.Kate R. Secombe, Janet K. Coller, Rachel J. Gibson, Hannah R. Wardill and Joanne M. Bowe

    The Influence of an Orienting Task on the Memory Performance of Children with Reading Problems

    Full text link
    This study investigated the hypothesis that differences in performance between reading disabled and normal children on a rote memory task could be eliminated if both groups were induced to process the material to be remembered in the same manner. The free recall of fourth-grade good and poor readers was tested following a free study period and the performance of an orienting task that required subjects to sort the material into taxonomic categories. There was a significant group by conditions interaction, with recall differences in the free study condition being eliminated following performance of the orienting task. The results have important implications for theoretical explanations of performance deficits in reading disabled children.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68893/2/10.1177_002221947901200608.pd

    Reverse Monte Carlo modeling of amorphous silicon

    Full text link
    An implementation of the Reverse Monte Carlo algorithm is presented for the study of amorphous tetrahedral semiconductors. By taking into account a number of constraints that describe the tetrahedral bonding geometry along with the radial distribution function, we construct a model of amorphous silicon using the reverse monte carlo technique. Starting from a completely random configuration, we generate a model of amorphous silicon containing 500 atoms closely reproducing the experimental static structure factor and bond angle distribution and in improved agreement with electronic properties. Comparison is made to existing Reverse Monte Carlo models, and the importance of suitable constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR

    The hyperon-nucleon interaction: conventional versus effective field theory approach

    Get PDF
    Hyperon-nucleon interactions are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. With regard to meson-exchange hyperon-nucleon models we focus on the new potential of the Juelich group, whose most salient feature is that the contributions in the scalar--isoscalar (\sigma) and vector--isovector (\rho) exchange channels are constrained by a microscopic model of correlated \pi\pi and KKbar exchange.Comment: 28 pages, 8 figures, submitted to Lecture Notes in Physic

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    • 

    corecore