128 research outputs found
A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism
<p>Abstract</p> <p>Background</p> <p>Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to μ-opioid receptors (MORs), which are 7 transmembrane domain (7TM) G-protein-coupled receptors (GPCRs), and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH). In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood.</p> <p>Results</p> <p>We recently discovered a new human alternatively spliced isoform of MOR (MOR1K) that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca<sup>2+ </sup>levels as well as increased nitric oxide (NO) release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Gα<sub>i/o </sub>complex, MOR1K couples to the stimulatory Gα<sub>s </sub>complex.</p> <p>Conclusion</p> <p>The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects.</p
Mobile phone-delivered reminders and incentives to improve childhood immunisation coverage and timeliness in Kenya (M-SIMU): a cluster randomised controlled trial
Background As mobile phone access continues to expand globally, opportunities exist to leverage these technologies to
support demand for immunisation services and improve vaccine coverage. We aimed to assess whether short message
service (SMS) reminders and monetary incentives can improve immunisation uptake in Kenya.
Methods In this cluster-randomised controlled trial, villages were randomly and evenly allocated to four groups:
control, SMS only, SMS plus a 75 Kenya Shilling (KES) incentive, and SMS plus 200 KES (85 KES = USD$1). Caregivers
were eligible if they had a child younger than 5 weeks who had not yet received a first dose of pentavalent vaccine.
Participants in the intervention groups received SMS reminders before scheduled pentavalent and measles
immunisation visits. Participants in incentive groups, additionally, received money if their child was timely
immunised (immunisation within 2 weeks of the due date). Caregivers and interviewers were not masked. The
proportion of fully immunised children (receiving BCG, three doses of polio vaccine, three doses of pentavalent
vaccine, and measles vaccine) by 12 months of age constituted the primary outcome and was analysed with logbinomial
regression and General Estimating Equations to account for correlation within clusters. This trial is
registered with ClinicalTrials.gov, number NCT01878435.
Findings Between Oct 14, 2013, and Oct 17, 2014, we enrolled 2018 caregivers and their infants from 152 villages into
the following four groups: control (n=489), SMS only (n=476), SMS plus 75 KES (n=562), and SMS plus 200 KES
(n=491). Overall, 1375 (86%) of 1600 children who were successfully followed up achieved the primary outcome, full
immunisation by 12 months of age (296 [82%] of 360 control participants, 332 [86%] of 388 SMS only participants,
383 [86%] of 446 SMS plus 75 KES participants, and 364 [90%] of 406 SMS plus 200 KES participants). Children in the
SMS plus 200 KES group were significantly more likely to achieve full immunisation at 12 months of age (relative risk
1·09, 95% CI 1·02–1·16, p=0·014) than children in the control group.
Interpretation In a setting with high baseline immunisation coverage levels, SMS reminders coupled with incentives
significantly improved immunisation coverage and timeliness. Given that global immunisation coverage levels have
stagnated around 85%, the use of incentives might be one option to reach the remaining 15%
Structural Basis for μ-Opioid Receptor Binding and Activation
Opioids that stimulate the μ-opioid receptor (MOR1) are the most frequently prescribed and effective analgesics. Here we present a structural model of MOR1. Molecular dynamics simulations show a ligand-dependent increase in the conformational flexibility of the third intracellular loop that couples with the G-protein complex. These simulations likewise identified residues that form frequent contacts with ligands. We validated the binding residues using site-directed mutagenesis coupled with radioligand binding and functional assays. The model was used to blindly screen a library of ~1.2 million compounds. From the thirty-four compounds predicted to be strong binders, the top three candidates were examined using biochemical assays. One compound showed high efficacy and potency. Post hoc testing revealed this compound to be nalmefene, a potent clinically used antagonist, thus further validating the model. In summary, the MOR1 model provides a tool for elucidating the structural mechanism of ligand-initiated cell signaling and screening for novel analgesics
Facial pain with localized and widespread manifestations: Separate pathways of vulnerability
Human association studies of common genetic polymorphisms have identified many loci that are associated with risk of complex diseases, although individual loci typically have small effects. However, by envisaging genetic associations in terms of cellular pathways, rather than any specific polymorphism, combined effects of many biologically-relevant alleles can be detected. The effects are likely to be most apparent in investigations of phenotypically-homogenous subtypes of complex diseases. We report findings from a case-control, genetic association study of relationships between 2,925 SNPs and two subtypes of a commonly occurring chronic facial pain condition, temporomandibular disorder (TMD): 1) localized TMD; and 2) TMD with widespread pain. When compared to healthy controls, cases with localized TMD differed in allelic frequency of SNPs that mapped to a serotonergic receptor pathway (P=0.0012), while cases of TMD with widespread pain differed in allelic frequency of SNPs that mapped to a T-cell receptor pathway (P=0.0014). A risk index representing combined effects of six SNPs from the serotonergic pathway was associated with greater odds of localized TMD (odds ratio = 2.7, P=1.3×10−9), and the result was reproduced in a replication case-control cohort study of 639 people (odds ratio = 1.6, P=0.014). A risk index representing combined effects of eight SNPs from the T-cell receptor pathway was associated with greater odds of TMD with widespread pain (P=1.9×10−8), although the result was not significant in the replication cohort. These findings illustrate potential for clinical classification of chronic pain based on distinct molecular profiles and genetic background
Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study
Genetic factors play a role in the etiology of persistent pain conditions, putatively by modulating underlying processes such as nociceptive sensitivity, psychological well-being, inflammation, and autonomic response. However, to date, only a few genes have been associated with temporomandibular disorders (TMD). This study evaluated 358 genes involved in pain processes, comparing allelic frequencies between 166 cases with chronic TMD and 1442 controls enrolled in the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) study cooperative agreement. To enhance statistical power, 182 TMD cases and 170 controls from a similar study were included in the analysis. Genotyping was performed using the Pain Research Panel, an Affymetrix gene chip representing 3295 single nucleotide polymorphisms, including ancestry-informative markers that were used to adjust for population stratification. Adjusted associations between genetic markers and TMD case status were evaluated using logistic regression. The OPPERA findings provided evidence supporting previously-reported associations between TMD and two genes: HTR2A and COMT. Other genes were revealed as potential new genetic risk factors for TMD, including NR3C1, CAMK4, CHRM2, IFRD1, and GRK5. While these findings need to be replicated in independent cohorts, the genes potentially represent important markers of risk for TMD and they identify potential targets for therapeutic intervention
Low Enzymatic Activity Haplotypes of the Human Catechol-O-Methyltransferase Gene: Enrichment for Marker SNPs
Catechol-O-methyltransferase (COMT) is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val158met) position, designated as low (LPS), average (APS), and high pain sensitive (HPS), are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs), accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224) is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488) are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity
A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors
Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention
Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception
The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. © 2012 Neely et al
Bioactive Hydrogel Substrates: Probing Leukocyte Receptor–Ligand Interactions in Parallel Plate Flow Chamber Studies
The binding of activated integrins on the surface of leukocytes facilitates the adhesion of leukocytes to vascular endothelium during inflammation. Interactions between selectins and their ligands mediate rolling, and are believed to play an important role in leukocyte adhesion, though the minimal recognition motif required for physiologic interactions is not known. We have developed a novel system using poly(ethylene glycol) (PEG) hydrogels modified with either integrin-binding peptide sequences or the selectin ligand sialyl Lewis X (SLe(X)) within a parallel plate flow chamber to examine the dynamics of leukocyte adhesion to specific ligands. The adhesive peptide sequences arginine–glycine–aspartic acid–serine (RGDS) and leucine–aspartic acid–valine (LDV) as well as sialyl Lewis X were bound to the surface of photopolymerized PEG diacrylate hydrogels. Leukocytes perfused over these gels in a parallel plate flow chamber at physiological shear rates demonstrate both rolling and firm adhesion, depending on the identity and concentration of ligand bound to the hydrogel substrate. This new system provides a unique polymer-based model for the study of interactions between leukocytes and endothelium as well as a platform to develop improved scaffolds for cardiovascular tissue engineering
Epiregulin and EGFR interactions are involved in pain processing
The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions
- …