401 research outputs found

    Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes

    Get PDF
    The rock record contains a rich variety of sedimentary surface textures on siliciclastic sandstone, siltstone and mudstone bedding planes. In recent years, an increasing number of these textures have been attributed to surficial microbial mats at the time of deposition, resulting in their classification as microbially induced sedimentary structures, or MISS. Research into MISS has developed at a rapid rate, resulting in a number of misconceptions in the literature. Here, we attempt to rectify these MISS misunderstandings. The first part of this paper surveys the stratigraphic and environmental range of reported MISS, revealing that contrary to popular belief there are more reported MISS-bearing rock units of Phanerozoic than Precambrian age. Furthermore, MISS exhibit a pan-environmental and almost continuous record since the Archean. Claims for the stratigraphic restriction of MISS to intervals prior to the evolution of grazing organisms or after mass extinction events, as well as claims for the environmental restriction of MISS, appear to result from sampling bias. In the second part of the paper we suggest that raised awareness of MISS has come at the cost of a decreasing appreciation of abiotic processes that may create morphologically similar features. By introducing the umbrella term ‘sedimentary surface textures’, of which MISS are one subset, we suggest a practical methodology for classifying such structures in the geological record. We illustrate how elucidating the formative mechanisms of ancient sedimentary surface textures usually requires consideration of a suite of sedimentological evidence from surrounding strata. Resultant interpretations, microbial or non-microbial, should be couched within a reasonable degree of uncertainty. This approach recognizes that morphological similarity alone does not constitute scientific proof of a common origin, and reinstates a passive descriptive terminology for sedimentary surface textures that cannot be achieved with the current MISS lexicon. It is hoped that this new terminology will reduce the number of overly sensational and misleading claims of MISS occurrence, and permit the means to practically separate initial observation from interpretation. Furthermore, this methodology offers a scientific approach that appreciates the low likelihood of conclusively identifying microbial structures from visual appearance alone, informing the search for true MISS in Earth's geological record and potentially on other planetary bodies such as Mars.Instances of sedimentary surface textures in the field were identified coincidentally during multiple seasons of varied field investigations primarily funded for NSD by a variety of organisations including a George Frederic Matthew Research Grant from the New Brunswick Museum for 2012, and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to MRG. AGL is supported by the Natural Environment Research Council [grant number NE/L011409/1].This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.earscirev.2016.01.00

    Reply to comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes”

    Get PDF
    We thank Noffke (2017) for her comment and for providing an opportunity to clarify our classification of “sedimentary surface textures”. We accord great credit to Dr. Noffke and other dedicated researchers whose detailed work has brought microbially induced sedimentary structures (MISS) to the widespread attention of geoscientists. However, we stand by our assertion that attributing structures observed in practical field and laboratory studies to processes of formation is much more problematic than Noffke (2017) indicates. Indeed, points in the Comment confirm the need for a classification system that categorises the degree of certainty attributed to a given interpretation. We stress that our paper was not designed as a critique of previous studies of MISS but rather was designed to encourage a reasonable assessment of uncertainty in assigning sedimentary surface textures to physical processes or to MISS

    Sedimentology and stratigraphy of the type section of the Pennsylvanian Boss Point Formation, Joggins Fossil Cliffs, Nova Scotia, Canada

    Get PDF
    The 1125-m-thick type section of the Pennsylvanian Boss Point Formation is well exposed along the shore of the Bay of Fundy in Nova Scotia. We provide the first comprehensive account of the entirety of this formation, which comprises nearly one-third of the stratigraphic thickness of the Joggins Fossil Cliffs UNESCO World Heritage Site. The basal Chignecto Bay Member (0–91.5 m) is composed of redbeds, single-storey channel bodies with northerly paleoflow, and thin palustrine limestones. The middle Ward Point Member (91.5–951.7 m) contains up to 16 megacycles composed of alternations between thick packages of braided fluvial sandstone and fine-grained deposits. Although regional studies of the Boss Point Formation suggest that the fine-grained deposits are largely composed of lacustrine sediments, these intervals consist largely of poorly drained and well-drained floodplain deposits in the type section. The facies variations and southeast-directed paleoflow in the Ward Point Member record modest uplift associated with the growth of the salt-cored Minudie Anticline. The North Reef Member (951.7–1125 m) is composed of redbeds and two distinctive multistorey channel bodies. This uppermost member records a shift to more arid, oxidizing conditions, was the precursor to a major phase of salt withdrawal, and represents a transition to the overlying Little River Formation. The sedimentological framework, revised stratigraphy, and detailed measured section and map will provide a foundation for future study of this remarkable Pennsylvanian exposure

    Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes

    Get PDF
    The rock record contains a rich variety of sedimentary surface textures on siliciclastic sandstone, siltstone and mudstone bedding planes. In recent years, an increasing number of these textures have been attributed to surficial microbial mats at the time of deposition, resulting in their classification as microbially induced sedimentary structures, or MISS. Research into MISS has developed at a rapid rate, resulting in a number of misconceptions in the literature. Here, we attempt to rectify these MISS misunderstandings. The first part of this paper surveys the stratigraphic and environmental range of reported MISS, revealing that contrary to popular belief there are more reported MISS-bearing rock units of Phanerozoic than Precambrian age. Furthermore, MISS exhibit a pan-environmental and almost continuous record since the Archean. Claims for the stratigraphic restriction of MISS to intervals prior to the evolution of grazing organisms or after mass extinction events, as well as claims for the environmental restriction of MISS, appear to result from sampling bias. In the second part of the paper we suggest that raised awareness of MISS has come at the cost of a decreasing appreciation of abiotic processes that may create morphologically similar features. By introducing the umbrella term ‘sedimentary surface textures’, of which MISS are one subset, we suggest a practical methodology for classifying such structures in the geological record. We illustrate how elucidating the formative mechanisms of ancient sedimentary surface textures usually requires consideration of a suite of sedimentological evidence from surrounding strata. Resultant interpretations, microbial or non-microbial, should be couched within a reasonable degree of uncertainty. This approach recognizes that morphological similarity alone does not constitute scientific proof of a common origin, and reinstates a passive descriptive terminology for sedimentary surface textures that cannot be achieved with the current MISS lexicon. It is hoped that this new terminology will reduce the number of overly sensational and misleading claims of MISS occurrence, and permit the means to practically separate initial observation from interpretation. Furthermore, this methodology offers a scientific approach that appreciates the low likelihood of conclusively identifying microbial structures from visual appearance alone, informing the search for true MISS in Earth's geological record and potentially on other planetary bodies such as Mars

    Dendrochronological dating of coal mine workings at the Joggins Fossil Cliffs, Nova Scotia, Canada

    Get PDF
    Joggins, Nova Scotia was one of the first places in North America where coal was mined. In this paper we employ dendrochronology to date timber pit props preserved within relic coal mine workings on the closely adjacent Fundy and Dirty seams. These remains comprise a system of adits created through ‘room and pillar’ mining. Of the seventy-three samples collected, forty-eight were successfully cross-dated against a local red spruce (Picea rubens Sarg.) master chronology thereby establishing the year in which each individual sample was cut as a live tree. Results indicate cut dates of 1849-1875 which are generally consistent with written archival records of mining activity on these coal seams. Our analysis of fourteen separate adits allows us to distinguish two phases of mining. Most adits (numbers 1-9 and 11-12 with cut dates of 1849-1868) are relics of an initial operation by the General Mining Association (1865-1871), which opened a mine entered at beach level. Dendrochronological dates preceding the opening of this mine may suggest that timber stockpiled from the nearby Joggins Mine (opened 1847) was used in its construction. The remaining adits (numbers 10 and 13-14 with cut dates of 1873-1875) are probably relics of a later mine opened by the Joggins Coal Mining Company (1872-1877). Although this mine was centered ~500 m inland, its western peripheral workings passed through the earlier workings to the shore. Findings improve knowledge of the industrial archaeology of the UNESCO World Heritage Site and help refine the regional master red spruce chronology for future dendrochronological studies
    • 

    corecore