491 research outputs found

    How to Run Through Walls: Dynamics of Bubble and Soliton Collisions

    Full text link
    It has recently been shown in high resolution numerical simulations that relativistic collisions of bubbles in the context of a multi-vacua potential may lead to the creation of bubbles in a new vacuum. In this paper, we show that scalar fields with only potential interactions behave like free fields during high-speed collisions; the kick received by them in a collision can be deduced simply by a linear superposition of the bubble wall profiles. This process is equivalent to the scattering of solitons in 1+1 dimensions. We deduce an expression for the field excursion (shortly after a collision), which is related simply to the field difference between the parent and bubble vacua, i.e. contrary to expectations, the excursion cannot be made arbitrarily large by raising the collision energy. There is however a minimum energy threshold for this excursion to be realized. We verify these predictions using a number of 3+1 and 1+1 numerical simulations. A rich phenomenology follows from these collision induced excursions - they provide a new mechanism for scanning the landscape, they might end/begin inflation, and they might constitute our very own big bang, leaving behind a potentially observable anisotropy.Comment: 15pgs, 14 figures, v2, thanks for the feedback

    Time-Scales for Nonlinear Processes in Preheating after Multifield Inflation with Nonminimal Couplings

    Full text link
    We have conducted extensive lattice simulations to study the post-inflation dynamics of multifield models involving nonminimal couplings. We explore the parameter dependence of preheating in these models and describe the various time-scales that control such nonlinear processes as energy transfer, re-scattering, and the approach to radiation-domination and thermalization. In the limit of large nonminimal couplings (ΟI∌100\xi_I \sim 100), we find that efficient transfer of energy from the inflaton condensate to radiative degrees of freedom, emergence of a radiation-dominated equation of state, and the onset of thermalization each consistently occur within Nrehâ‰Č3N_{\rm reh} \lesssim 3 ee-folds after the end of inflation, largely independent of the values of the other couplings in the models. The exception is the case of negative ellipticity, in which there is a misalignment between the dominant direction in field-space along which the system evolves and the larger of the nonminimal couplings ΟI\xi_I. In those cases, the field-space-driven parametric resonance is effectively shut off. More generally, the competition between the scalar fields' potential and the field-space manifold structure can yield interesting phenomena such as two-stage resonances. Despite the explosive particle production, which can lead to a quick depletion of the background energy density, the nonlinear processes do not induce any super-horizon correlations after the end of inflation in these models, which keeps predictions for CMB observables unaffected by the late-time amplification of isocurvature fluctuations. Hence the excellent agreement between primordial observables and recent observations is preserved for this class of models, even when we consider post-inflation dynamics.Comment: 32 pages (plus appendices), 17 figures. References added and minor edits to match published versio

    Precession of a Freely Rotating Rigid Body. Inelastic Relaxation in the Vicinity of Poles

    Get PDF
    When a solid body is freely rotating at an angular velocity Ω{\bf \Omega}, the ellipsoid of constant angular momentum, in the space Ω1,Ω2,Ω3\Omega_1, \Omega_2, \Omega_3, has poles corresponding to spinning about the minimal-inertia and maximal-inertia axes. The first pole may be considered stable if we neglect the inner dissipation, but becomes unstable if the dissipation is taken into account. This happens because the bodies dissipate energy when they rotate about any axis different from principal. In the case of an oblate symmetrical body, the angular velocity describes a circular cone about the vector of (conserved) angular momentum. In the course of relaxation, the angle of this cone decreases, so that both the angular velocity and the maximal-inertia axis of the body align along the angular momentum. The generic case of an asymmetric body is far more involved. Even the symmetrical prolate body exhibits a sophisticated behaviour, because an infinitesimally small deviation of the body's shape from a rotational symmetry (i.e., a small difference between the largest and second largest moments of inertia) yields libration: the precession trajectory is not a circle but an ellipse. In this article we show that often the most effective internal dissipation takes place at twice the frequency of the body's precession. Applications to precessing asteroids, cosmic-dust alignment, and rotating satellites are discussed.Comment: 47 pages, 1 figur

    High-resolution error detection in the capture process of a single-electron pump

    Get PDF
    The dynamic capture of electrons in a semiconductor quantum dot (QD) by raising a potential barrier is a crucial stage in metrological quantized charge pumping. In this work, we use a quantum point contact (QPC) charge sensor to study errors in the electron capture process of a QD formed in a GaAs heterostructure. Using a two-step measurement protocol to compensate for 1/f noise in the QPC current, and repeating the protocol more than 106 times, we are able to resolve errors with probabilities of order 106. For the studied sample, one-electron capture is affected by errors in 30 out of every million cycles, while two-electron capture was performed more than 106 times with only one error. For errors in one-electron capture, we detect both failure to capture an electron and capture of two electrons. Electron counting measurements are a valuable tool for investigating non-equilibrium charge capture dynamics, and necessary for validating the metrological accuracy of semiconductor electron pumps
    • 

    corecore