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The dynamic capture of electrons in a semiconductor quantum dot (QD) by raising a potential

barrier is a crucial stage in metrological quantized charge pumping. In this work, we use a quantum

point contact (QPC) charge sensor to study errors in the electron capture process of a QD formed in

a GaAs heterostructure. Using a two-step measurement protocol to compensate for 1/f noise in the

QPC current, and repeating the protocol more than 106 times, we are able to resolve errors with

probabilities of order 10�6. For the studied sample, one-electron capture is affected by errors in

�30 out of every million cycles, while two-electron capture was performed more than 106 times

with only one error. For errors in one-electron capture, we detect both failure to capture an electron

and capture of two electrons. Electron counting measurements are a valuable tool for investigating

non-equilibrium charge capture dynamics, and necessary for validating the metrological accuracy

of semiconductor electron pumps. [http://dx.doi.org/10.1063/1.4939250]

Laterally gated semiconductor quantum dots (QDs)

have become a paradigmatic system for studying and manip-

ulating charge carriers in tunable confining potentials. In one

example, a dynamically gated QD can pump electrons from

a source to a drain electrode,1–4 generating an accurate quan-

tized current with metrological application as a new realisa-

tion of the ampere.5–8 In this application, the accuracy of

electron trapping and ejection in the non-adiabatic regime is

of key importance. We wish to transfer n electrons in

response to a single gate voltage cycle, with an error rate less

than 10�7. Recently, DC measurements8 have shown that

�6� 108 electrons per second can be transferred through a

QD with an average error rate as low as 2� 10�7. To probe

the individual probabilities Pn, mesoscopic charge detectors

need to be used to measure the number of electrons pumped

onto charge sensing islands,9–12 with the lowest reported

error probability, 10�4, achieved in a silicon QD pump.11

The error counting measurements on GaAs pumps9,10 were

performed in zero magnetic field using superconducting sin-

gle electron transistor (SET) charge detectors, and were

therefore not able to access the regime of high accuracy

pumping attained in fields >10 T.5,7,8 Precise single-electron

counting tests of semiconductor QD pumps in the high-field,

high-accuracy pumping regime are clearly desirable to vali-

date the DC pumping measurements, and also to approach

the benchmark error probability of �10�8 demonstrated for

a slow adiabatic metallic pump.13

In this work, we focus on measuring PN, the probability

of loading the QD with N electrons (distinguished from Pn,

the probability of pumping n electrons). There is good

experimental evidence that the ejection of electrons to the

drain can be accomplished with a sufficiently low error rate

to satisfy metrological criteria,14 and furthermore theoretical

treatments of the QD pumping process4,15–17 have shown

that n is determined during the loading stage. We use a quan-

tum point contact (QPC) charge detector strongly coupled to

the QD to probe the number of loaded electrons. The use of

a QPC instead of a SET detector9,10 allows operation in

strong magnetic fields. Electrons can be loaded with fast

voltage waveforms, as used in high-speed pumping experi-

ments5,8 and then probed on millisecond time-scales required

for high-fidelity readout. We use a 2-stage measurement pro-

tocol to suppress the effect of 1/f noise in the QPC due to

non-equilibrium charged defects,18 and we achieve a suffi-

ciently high charge detection fidelity (probability of the

charge detection yielding the right answer for N), to probe

loading probabilities at the 10�6 level. Finally, we demon-

strate good qualitative agreement between electron-detection

measurements of N, and hni extracted from the pumped cur-

rent measured in a separate experiment.

A scanning electron microscope image of a device simi-

lar to the one used in this study is shown in Fig. 1(a). The de-

vice is fabricated on a GaAs/AlxGa1�xAs wafer using optical

and electron-beam lithography and wet-chemical etching.2 A

2-dimensional electron gas (2-DEG) with density 2:3� 1011

cm�2 and mobility 2:28� 106 cm2 V�1 s�1is formed 90 nm

below the surface. The QD pump is similar to those used in

previous high-precision measurements of the pumped cur-

rent:5 voltages VG1 and VG2 applied to the entrance (left) and

exit (right) gates form a QD in the cut-out region between the

gates. In this work, we introduce a third gate, biased with volt-

age VQPC, to form a QPC close to the QD. When the channel

between the QPC gate and the exit gate is biased close to

pinch-off (Fig. 1(b)), the conductance of the channel probes
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the local charge environment and therefore the number of

electrons in the QD.19 We applied a source-drain bias voltage

VB¼ 1 mV across the QPC channel and measured the current

IQPC using a room temperature transimpedance amplifier with

gain 106 V/A and 400 Hz bandwidth. The amplifier output

was continuously digitized by an integrating voltmeter with

1 ms aperture. All measurements were performed in a

sorption-pumped helium-3 cryostat, at base temperature

�300 mK. A magnetic field was applied perpendicular to the

plane of the 2-DEG to enhance the current quantization.5,7,8,20

Our measurement protocol is illustrated by schematic

potential diagrams in Fig. 1(c). The QD is initialized (frame

1) by applying a voltage VG1ðtÞ to the entrance gate, raising

the entrance barrier above the Fermi level of the source

electrode and trapping N electrons in the QD. N is tuned by

the fixed exit gate voltage VG2L. Two types of entrance gate

ramp are used in the experiments, denoted “slow” (Fig. 2(a))

and “fast” (Fig. 2(d)), differing in rise-time by a factor �105.

The entrance gate ramp VG1ðtÞ terminates at VG1 ¼ VG1R

(frame 2), with the electrons trapped in a deep potential well.

Finally, VG2 is adjusted to its readout value VG2R (frame 3),

and the QPC current IN is measured following a 4 ms delay

to reject transient effects. This final adjustment is a conven-

ience, which allows readout of the charge state at fixed pump

gate voltages ½VG1R;VG2R� independently of the tuning pa-

rameter VG2L.21

The noise spectrum of IQPC in the amplifier bandwidth

was dominated by a 1/f contribution, as seen in previous stud-

ies on similar QPC devices where the 1/f noise was shown to

be due to an ensemble of two-level fluctuators (TLFs).18 As

discussed later, discrete time-domain jumps in IQPC due to the

action of single TLFs18,22 were also occasionally seen. To

ensure high detection fidelity in the presence of the constant

FIG. 1. (a) SEM image of device and electrical connections to the measure-

ment circuit. The crossed boxes numbered 1–3 indicate Ohmic contacts to

the 2-DEG. (b) QPC pinch-off characteristic with VB¼ 1 mV. (c) Frames

(1–3): schematic potential landscape showing initialization of the QD with

one electron. Frames (4–6): initialization of the QD with zero electrons.

Frames (1–6) illustrate one measurement cycle. (d) Example of raw QPC

current data for one measurement cycle, for the case of two electrons loaded

into the QD, illustrating the difference signal DIQPC. (e) Same as (d), but one

electron is loaded into the QD. (f) Histograms of the QPC currents corre-

sponding to zero and one electron, obtained from 950 measurement cycles

spaced evenly over 15 h. Plots (d)–(f) share the same y-axis. (g) Histograms

of DIQPC for 3 sets of 5000 cycles, with VG2L set to �0.65 V, �0.616 V, and

�0.59 V, to load, respectively, 0, 1, and 2 electrons into the QD. Solid black

line: Gaussian fit to the N¼ 1 data. B¼ 12 T for all data in this figure.

FIG. 2. (a) Time dependence of the slow entrance gate loading waveform,

measured on a sampling oscilloscope. (b) Loading probabilities for up to 3

electrons as a function of exit gate voltage using the slow load waveform.

B¼ 12 T. Black data points denote values of VG2L where all the cycles yielded

the same N. (c) Log-scale histogram of DIQPC for 1 847 154 cycles using the

slow waveform, at the exit gate voltage denoted by the vertical arrow marked

“A” in graph (b). Vertical dotted lines show the thresholds for discriminating

0, 1, and 2 electrons, and shaded grey boxes show the 64r width of distribu-

tions obtained from short calibrations runs similar to Fig. 1(g). (d) Same as

(a), but showing the fast loading waveform. (e) Same as (b), but using the fast

waveform at B¼ 10 T. (f) Same as (c), but using the fast waveform, 1 045 310

cycles at the gate voltage indicated by “B” in (e). (g) 1 149 457 cycles at the

gate voltage indicated by “C” in (e). Plots (f) and (g) share the same x-axis,

and B¼ 10 T. Boxed numbers in plots (c), (f), and (g) indicate the number of

counts for the relevant N after filtering out artifacts.
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1/f noise spectrum, we reference the QPC current (IN / �N
for small N) to a second current IZ. IZ is measured with the

QD initialised to a known N¼ 0 state, by raising the entrance

barrier with the exit gate set to a large negative value VG2H

(frame 4). N is then determined from the difference

DIQPC ¼ IN � IZ. The series of frames (1–6) illustrate one

measurement cycle. Raw QPC current data are shown in Figs.

1(d) and 1(e) for cases N¼ 2 and N¼ 1, respectively. Fig. 1(f)

shows histograms of IN (green, lower peak) and IZ (black,

upper peak) for a set of measurement cycles loading one elec-

tron, spread over 15 h. The effect of 1/f noise is visible as

asymmetric broadening of the peaks, and the fidelity of meas-

uring N using the IN data alone is estimated as �0:999. Fig.

1(g) shows histograms of DIQPC obtained from 3 runs of 5000

cycles each, with VG2L set to load approximately 0, 1, and 2

electrons using the slow loading waveform. The histograms

form 3 widely separated peaks, which we identify with N¼ 0,

1, 2, which fitted well to normal distributions (shown for

N¼ 1) with standard deviation r¼ 20 pA. For these relatively

short calibration runs of 5000 cycles, there were no outliers

inconsistent with the normal distribution. Applying a simple

thresholding algorithm to determine N from DIQPC, the intrin-

sic probability Pfail of measuring the wrong value of N is

given by 1� erf ðDI1e=2
ffiffiffi
2
p

rÞ, where DI1e ¼ 320 pA is the

separation between peaks. Pfail is weakly dependent on the

magnetic field B, and for the values of B used in this study,

Pfail < 10�8 which is much smaller than the expected statisti-

cal uncertainty in PN. However, for very long runs, discrete

TLF jumps caused a non-Gaussian background to the distribu-

tion of DIQPC, requiring a more elaborate protocol than simple

thresholding to determine PN.23

In Figs. 2(b) and 2(e) we show PNðVG2LÞ for 0 � N � 3,

obtained from sets of 500 cycles for each VG2L using the

slow and fast loading waveforms, respectively. As expected

from DC measurements with the pump in a magnetic

field,5,7,8,20 there are a series of wide plateaus where one

value of N dominates the loading statistics. This is high-

lighted by color-coding data points black when all the cycles

yielded the same value of N. Comparable data have been pre-

sented previously,9 but at zero magnetic field where the re-

gime of very accurate loading could not be accessed. We

calculated hNi ¼
P

NPN for the fast loading data, and fitted

it to both the decay cascade model4,15 (Fig. 4(c), inset) and

also a thermal equilibrium model.9,11 The decay cascade

model yielded a better fit, as was also found at the much

lower temperature of 25 mK.9 The plateaus are considerably

sharper using the slow loading pulse, consistent with pumped

current measurements in which the rise time (proportional to

the inverse of the pumping frequency) was varied in the 1�
10 ns range.5 Our technique allows the investigation of rise

times over many orders of magnitude, including those too

slow to generate a measurable pumped current. We note that

the decay cascade model does not predict any rise-time de-

pendence to the plateau shape,4,15 and the deterioration of

the plateaus as the rise time is reduced5,8 does not currently

have a satisfactory explanation.

To assess the loading accuracy on the plateaus, we per-

formed a number of long runs, comprising �106 cycles at

fixed VG2L chosen to preferentially load always the same

desired N, NDES ¼ 1; 1; 2; 1 for runs A, B, C, and D, respec-

tively. Only run A used the slow pulse. The quantity of inter-

est is the number of times N 6¼ NDES, an event we refer to as

an “error.” Histograms of DIQPC for three of these runs,

denoted A, B, and C, are presented in Figs. 2(c), 2(f), and

2(g), plotted on a log scale to highlight rare events. For each

run, most of the counts comprise a Gaussian peak correspond-

ing to N ¼ NDES, but for run B there is also a small N¼ 0

peak. For all the runs, there is a background of events, which

are not statistically compatible with any N state. Examination

of the raw IQPCðtÞ data for these events showed that most of

them could be attributed to TLF events well known to occur

in our type of GaAs device.22 Assuming that TLF events are

not correlated with loading errors, PN; fN 6¼ NDESg was eval-

uated from the small number of counts, indicated on Figs.

2(c), 2(f), and 2(g), with DIQPC within 64r of the expected

value for a given N 6¼ NDES, which could not be attributed to

TLF events.23 From these data, we calculated the most proba-

ble values for PN and estimated the asymmetric statistical

FIG. 4. (a) Time dependence of the fast waveform used to load electrons.

The negative-going part at the beginning of the waveform ejects any trapped

electrons to the drain, but plays no role in the loading experiment. (b)

Pumping waveform. (c) Comparison of average number of electrons loaded

(points) with pumped current (line) in loading and pumping experiments,

respectively. The inset shows the portion of the loading data from the main

figure with a fit to the decay-cascade model.

FIG. 3. (a) Solid points: the PN data of Fig. 2(b) re-plotted on a log scale.

Open point: P2 calculated from the data of run A. Dotted lines are guide to

the eye. (b) Solid points: data of Fig. 2(e) re-plotted on a log scale. Open

points: P0; P1, and P2 calculated from the data of runs B–D. Error bars are

smaller than the plotted points. Solid lines are theoretical fits to the decay-

cascade model on the hNi ¼ 1 and hNi ¼ 2 plateaus.

023502-3 Giblin et al. Appl. Phys. Lett. 108, 023502 (2016)



uncertainties (68.27% confidence interval) from the Poisson

distribution.24 For run B, P0 ¼ ð26:7þ6:1
�5:0Þ � 10�6; P2 ¼

ð4:8þ3:2
�2:1Þ � 10�6 and for run C, P0 ¼ P3 ¼ ð0þ1:6

�0 Þ � 10�6;
P1 ¼ ð0:9þ2:0

�0:7Þ � 10�6. PN for runs A–D are plotted as open

points in Figs. 3(a) and 3(b) (the error bars are smaller than

the data points), along with the data of Figs. 2(b) and 2(e) re-

plotted on a log scale for comparison (solid points). For

NDES ¼ 1, the measured error rates are almost an order of

magnitude larger than predicted by fits to the decay-cascade

model (solid line in Fig. 3(b)).4,15 Additionally, the co-

existence of N¼ 0 and N¼ 2 errors at the same pump operat-

ing point highlights the importance of electron counting meas-

urements, as these errors would partially cancel in an average

current measurement. These data also show that caution

should be exercised in using theoretical fits to low-resolution

data5–8 as a method of predicting the accuracy of a tunable-

barrier electron pump on a quantized plateau.

Finally, we compare hNi computed from the data set of

Fig. 2(e), with the normalised pump current IP=ef when the

load waveform was immediately followed by a pulse to eject

the trapped electrons to the drain (pump waveform Fig.

4(b)).5,8 The fast load waveform is shown in Fig. 4(a) for

comparison. The repetition frequency of the pump waveform

was 280 MHz, generating a current IP � 45 pA measured by

connecting the ammeter to contact 1 in Fig. 1(a), and ground-

ing contacts 2 and 3. The loading parts of the two waveforms

had the same VG1ðtÞ profile (grey boxes in Figs. 4(a) and

4(b)). In Fig. 4(c), hNi and IP=ef are plotted as a function of

exit gate voltage (for the case of the pumping data, the x-axis

is the constant DC voltage applied to the exit gate). The rea-

sonable agreement between the two measurements suggests

that the electron loading experiment is probing the same dy-

namical process, which determines the DC current in pumping

experiments, and furthermore suggests that the wide quantised

pumping plateaus seen here and in previous studies of QD

pumps3–8 are indeed due to transport of the same number of

electrons in each pumping cycle. On the other hand, close ex-

amination of Fig. 4(c) shows that the transitions between pla-

teaus are slightly broader in the loading experiment. This

could be evidence for back-action of the QPC on the electron

loading process, since the QPC source-drain bias voltage was

not present during the pumping experiment. The irregularity

in the transition from hNi ¼ 0 to hNi ¼ 1 clearly visible in

Fig. 3(b) was not present in the DC measurements, and may

be further evidence for back-action. Further studies will clar-

ify the back-action of the QPC on the dynamic QD.

In summary, we have presented a simple device archi-

tecture and measurement protocol for studying directly the

loading statistics of a dynamic QD with high precision. By

incorporating a reference measurement using a known

charge state, 1/f noise in the QPC detector is compensated,

and the number of electrons in the QD can be measured with

an intrinsic fidelity exceeding 1� 10�8. This is a significant

step towards validating semiconductor QD pumps as metro-

logical current sources. Our device can also be used to study

the QD initialization process over many orders of magnitude

in barrier rise time, without constraints imposed by the need

to measure a small DC current. This will help to clarify the

role of quantum non-adiabaticity16,17,25 in the formation of

the QD. Improvements to the control and readout electronics

will allow �107 cycles in a reasonable 12 h experimental

run, reducing the statistical uncertainty in the measurement

of small probabilities, and experimental precautions against

TLFs, for example, biased cool-down,26 should remove these

unwanted artifacts in future experiments.
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