116 research outputs found

    Microarray amplification bias: loss of 30% differentially expressed genes due to long probe – poly(A)-tail distances

    Get PDF
    BACKGROUND: Laser microdissection microscopy has become a rising tool to assess gene expression profiles of pure cell populations. Given the low yield of RNA, a second round of amplification is usually mandatory to yield sufficient amplified-RNA for microarray approaches. Since amplification induces truncation of RNA molecules, we studied the impact of a second round of amplification on identification of differentially expressed genes in relation to the probe - poly(A)-tail distances. RESULTS: Disagreement was observed between gene expression profiles acquired after a second round of amplification compared to a single round. Thirty percent of the differentially expressed genes identified after one round of amplification were not detected after two rounds. These inconsistent genes have a significant longer probe - poly(A)-tail distance. qRT-PCR on unamplified RNA confirmed differential expression of genes with a probe - poly(A)-tail distance >500 nucleotides appearing only after one round of amplification. CONCLUSION: Our data demonstrate a marked loss of 30% of truly differentially expressed genes after a second round of amplification. Therefore, we strongly recommend improvement of amplification procedures and importance of microarray probe design to allow detection of all differentially expressed genes in case of limited amounts of RNA

    Systematic evaluation of chromosome conformation capture assays [preprint]

    Get PDF
    Chromosome conformation capture (3C)-based assays are used to map chromatin interactions genome-wide. Quantitative analyses of chromatin interaction maps can lead to insights into the spatial organization of chromosomes and the mechanisms by which they fold. A number of protocols such as in situ Hi-C and Micro-C are now widely used and these differ in key experimental parameters including cross-linking chemistry and chromatin fragmentation strategy. To understand how the choice of experimental protocol determines the ability to detect and quantify aspects of chromosome folding we have performed a systematic evaluation of experimental parameters of 3C-based protocols. We find that different protocols capture different 3D genome features with different efficiencies. First, the use of cross-linkers such as DSG in addition to formaldehyde improves signal-to-noise allowing detection of thousands of additional loops and strengthens the compartment signal. Second, fragmenting chromatin to the level of nucleosomes using MNase allows detection of more loops. On the other hand, protocols that generate larger multi-kb fragments produce stronger compartmentalization signals. We confirmed our results for multiple cell types and cell cycle stages. We find that cell type-specific quantitative differences in chromosome folding are not detected or underestimated by some protocols. Based on these insights we developed Hi-C 3.0, a single protocol that can be used to both efficiently detect chromatin loops and to quantify compartmentalization. Finally, this study produced ultra-deeply sequenced reference interaction maps using conventional Hi-C, Micro-C and Hi-C 3.0 for commonly used cell lines in the 4D Nucleome Project

    Cortactin expression predicts poor survival in laryngeal carcinoma

    Get PDF
    Amplification of the 11q13 region is one of the most frequent aberrations in squamous cell carcinomas of the head and neck region (HNSCC). Amplification of 11q13 has been shown to correlate with the presence of lymph node metastases and decreased survival. The 11q13.3 amplicon carries numerous genes including cyclin D1 and cortactin. Recently, we reported that FADD becomes overexpressed upon amplification and that FADD protein expression predicts for lymph node positivity and disease-specific mortality. However, the gene within the 11q13.3 amplicon responsible for this correlation is yet to be identified. In this paper, we compared, using immunohistochemical analysis for cyclin D1, FADD and cortactin in a series of 106 laryngeal carcinomas which gene correlates best with lymph node metastases and increased disease-specific mortality. Univariate Cox regression analysis revealed that high expression of cyclin D1 (P=0.016), FADD (P=0.003) and cortactin (P=0.0006) predict for increased risk to disease-specific mortality. Multivariate Cox analysis revealed that only high cortactin expression correlates with disease-specific mortality independent of cyclin D1 and/or FADD. Of genes located in the 11q13 amplicon, cortactin expression is the best predictor for shorter disease-specific survival in late stage laryngeal carcinomas

    Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    Get PDF
    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies

    Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.

    Get PDF
    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns

    Prognostic significance of cortactin levels in head and neck squamous cell carcinoma: comparison with epidermal growth factor receptor status

    Get PDF
    Cortactin is an actin-binding Src substrate involved in cell motility and invasion. In this study, we sought to examine the prognostic importance of cortactin protein expression in head and neck squamous cell carcinoma (HNSCC). To do so, cortactin and EGF receptor (EGFR) expression was retrospectively evaluated by immunohistochemistry in a tissue microarray composed of 176 HNSCCs with a mean follow-up time of 5 years. Cortactin immunoreactivity was weak to absent in normal epithelial tissue. Overexpression of the protein in 77 out of 176 tumours (44%) was associated with more advanced tumour-node-metastasis stage and higher histologic grade. Cortactin overexpression was associated with significantly increased local recurrence rates (49 vs 28% for high and low expressing carcinomas, respectively), decreased disease-free survival (17 vs 61%), and decreased the 5-year overall survival of (21 vs 58%), independently of the EGFR status. In multivariate analysis, cortactin expression status remained an independent prognostic factor for local recurrence, disease-free survival, and overall survival. Importantly, we identified a subset of patients with cortactin-overexpressing tumours that displayed low EGFR levels and a survival rate that equalled that of patients with tumoral overexpression of both EGFR and cortactin. These findings identify cortactin as a relevant prognostic marker and may have implications for targeted therapies in patients with HNSCC

    Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer

    Get PDF
    Introduction: The amplification event occurring at chromosome locus 11q13, reported in several different cancers, includes a number of potential oncogenes. We have previously reported amplification of one such oncogene, namely CCND1, to be correlated with an adverse effect of tamoxifen in premenopausal breast cancer patients. Over-expression of cyclin D-1 protein, however, confers tamoxifen resistance but not a tamoxifen-induced adverse effect. Potentially, co-amplification of an additional 11q13 gene, with a resulting protein over-expression, is required to cause an agonistic effect. Moreover, during 11q13 amplification a deletion of the distal 11q region has been described. In order to assess the potential impact of the deletion we examined a selected marker for this event. Method: Array comparative genomic hybridization analysis was employed to identify and confirm changes in the gene expression of a number of different genes mapping to the 11q chromosomal region, associated with CCND1 amplification. The subsequent protein expression of these candidate genes was then examined in a clinical material of 500 primary breast cancers from premenopausal patients who were randomly assigned to either tamoxifen or no adjuvant treatment. The protein expression was also compared with gene expression data in a subset of 56 breast cancer samples. Results: Cortactin and FADD (Fas-associated death domain) over-expression was linked to CCND1 amplification, determined by fluorescence in situ hybridization, but was not associated with a diminished effect of tamoxifen. However, deletion of distal chromosome 11q, defined as downregulation of the marker Chk1 (checkpoint kinase 1), was associated with an impaired tamoxifen response, and interestingly with low proliferative breast cancer of low grade. For Pak1 (p21-activated kinase 1) and cyclin D-1 the protein expression corresponded to the gene expression data. Conclusions: The results indicate that many 11q13 associated gene products are over-expressed in conjunction with cyclin D-1 but not linked to an agonistic effect of tamoxifen. Finally, the deletion of distal 11q, linked to 11q13 amplification, might be an important event affecting breast cancer outcome and tamoxifen response

    The 4D nucleome project

    Get PDF

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi
    • …
    corecore