435 research outputs found

    Individual sequences in large sets of gene sequences may be distinguished efficiently by combinations of shared sub-sequences

    Get PDF
    BACKGROUND: Most current DNA diagnostic tests for identifying organisms use specific oligonucleotide probes that are complementary in sequence to, and hence only hybridise with the DNA of one target species. By contrast, in traditional taxonomy, specimens are usually identified by 'dichotomous keys' that use combinations of characters shared by different members of the target set. Using one specific character for each target is the least efficient strategy for identification. Using combinations of shared bisectionally-distributed characters is much more efficient, and this strategy is most efficient when they separate the targets in a progressively binary way. RESULTS: We have developed a practical method for finding minimal sets of sub-sequences that identify individual sequences, and could be targeted by combinations of probes, so that the efficient strategy of traditional taxonomic identification could be used in DNA diagnosis. The sizes of minimal sub-sequence sets depended mostly on sequence diversity and sub-sequence length and interactions between these parameters. We found that 201 distinct cytochrome oxidase subunit-1 (CO1) genes from moths (Lepidoptera) were distinguished using only 15 sub-sequences 20 nucleotides long, whereas only 8–10 sub-sequences 6–10 nucleotides long were required to distinguish the CO1 genes of 92 species from the 9 largest orders of insects. CONCLUSION: The presence/absence of sub-sequences in a set of gene sequences can be used like the questions in a traditional dichotomous taxonomic key; hybridisation probes complementary to such sub-sequences should provide a very efficient means for identifying individual species, subtypes or genotypes. Sequence diversity and sub-sequence length are the major factors that determine the numbers of distinguishing sub-sequences in any set of sequences

    Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years

    Get PDF
    A phylogeny has been calculated by maximum likelihood comparisons of the concatenated consensus protein sequences of 29 tobamoviruses shown to be non-recombinant. This phylogeny has statistically significant support throughout, including its basal branches. The viruses form eight lineages that are congruent with the taxonomy of the hosts from which each was first isolated and, with the exception of three of the twenty-nine species, all fall into three clusters that have either asterid or rosid or caryophyllid hosts (i.e. the major subdivisions of eudicotyledonous plants). A modified Mantel permutation test showed that the patristic distances of virus and host phylogenies are significantly correlated, especially when the three anomalously placed viruses are removed. When the internal branches of the virus phylogeny were collapsed the congruence decreased. The simplest explanation of this congruence of the virus and host phylogenies is that most tobamovirus lineages have co-diverged with their primary plant hosts for more than 110 million years, and only the brassica-infecting lineage originated from a major host switch from asterids to rosids. Their co-divergence seems to have been 'fuzzy' rather than 'strict', permitting viruses to switch hosts within major host clades. Our conclusions support those of a coalesence analysis of tobamovirus sequences, that used proxy node dating, but not a similar analysis of nucleotide sequences from dated samples, which concluded that the tobamoviruses originated only 100 thousand years ago

    The genetic diversity of narcissus viruses related to turnip mosaic virus blur arbitrary boundaries used to discriminate potyvirus species

    Get PDF
    Narcissus plants (Narcissus tazetta var. chinensis) showing mosaic or striping leaves were collected from around Japan, and tested for virus infections using potyvirus-specific primers. Many were found to be infected with a macluravirus and mixtures of different potyviruses, one third of them narcissus yellow stripe virus (NYSV)-like viruses. Genomes of nine of the NYSV-like viruses were sequenced and, together with four already published, provided data for phylogenetic and pairwise identity analyses of their place in the turnip mosaic virus (TuMV) phylogenetic group. Using existing ICTV criteria for defining potyvirus species, the narcissus viruses in TuMV group were found to be from five species; the previously described NLSYV, and four new species we call narcissus virus 1 (NV-1) and narcissus yellow stripe-1 to -3 (NYSV-1, NYSV-2 and NYSV-3). However, as all are from a single host species, and natural recombinants with NV-1 and NYSV-3 'parents have been found in China and India, we also conclude that they could be considered to be members of a single mega-species, narcissus virus; the criteria for defining such a potyvirus species would then be that their polyprotein sequences have greater than 69% identical nucleotides and greater than 75% identical amino acids.This work was in part supported by the JSPS KAKENHI Grant numbers 24405026 and 16K14862

    Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago

    Get PDF
    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world

    Planar microfluidics - liquid handling without walls

    Full text link
    The miniaturization and integration of electronic circuitry has not only made the enormous increase in performance of semiconductor devices possible but also spawned a myriad of new products and applications ranging from a cellular phone to a personal computer. Similarly, the miniaturization and integration of chemical and biological processes will revolutionize life sciences. Drug design and diagnostics in the genomic era require reliable and cost effective high throughput technologies which can be integrated and allow for a massive parallelization. Microfluidics is the core technology to realize such miniaturized laboratories with feature sizes on a submillimeter scale. Here, we report on a novel microfluidic technology meeting the basic requirements for a microfluidic processor analogous to those of its electronic counterpart: Cost effective production, modular design, high speed, scalability and programmability

    The phylogenetics of the global population of potato virus Y and its necrogenic recombinants

    No full text
    Potato virus Y (PVY) is a major pathogen of potatoes and other solanaceous crops worldwide. It is most closely related to potyviruses first or only found in the Americas, and it almost certainly originated in the Andes, where its hosts were domesticated. We have inferred the phylogeny of the published genomic sequences of 240 PVY isolates collected since 1938 worldwide, but not the Andes. All fall into five groupings, which mostly, but not exclusively, correspond with groupings already devised using biological and taxonomic data. Only 42 percent of the sequences are not recombinant, and all these fall into one or other of three phylogroups; the previously named C (common), O (ordinary), and N (necrotic) groups. There are also two other distinct groups of isolates all of which are recombinant; the R-1 isolates have N (5' terminal minor) and O (major) parents, and the R-2 isolates have R-1 (major) and N (3' terminal minor) parents. Many isolates also have additional minor intra- and inter-group recombinant genomic regions. The complex interrelationships between the genomes were resolved by progressively identifying and removing recombinants using partitioned sequences of synonymous codons. Least squared dating and BEAST analyses of two datasets of gene sequences from non-recombinant heterochronously-sampled isolates (seventy-three non-recombinant major ORFs and 166 partial ORFs) found the 95% confidence intervals of the TMRCA estimates overlap around 1,000 CE (Common Era; AD). We attempted to identify the most accurate datings by comparing the estimated phylogenetic dates with historical events in the worldwide adoption of potato and other PVY hosts as crops, but found that more evidence from gene sequences of non-potato isolates, especially from South America, was required

    Αξιοβίωτη Ολοκληρωμένη Ανάπτυξη. Από την Θεωρία στην Πράξη: Η περίπτωση των αστέγων της Αθήνας

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Περιβάλλον και Ανάπτυξη
    corecore