391 research outputs found

    Gravitational quasinormal radiation of higher-dimensional black holes

    Full text link
    We find the gravitational resonance (quasinormal) modes of the higher dimensional Schwarzschild and Reissner-Nordstrem black holes. The effect on the quasinormal behavior due to the presence of the λ\lambda term is investigated. The QN spectrum is totally different for different signs of λ\lambda. In more than four dimensions there excited three types of gravitational modes: scalar, vector, and tensor. They produce three different quasinormal spectra, thus the isospectrality between scalar and vector perturbations, which takes place for D=4 Schwarzschild and Schwarzschild-de-Sitter black holes, is broken in higher dimensions. That is the scalar-type gravitational perturbations, connected with deformations of the black hole horizon, which damp most slowly and therefore dominate during late time of the black hole ringing.Comment: 13 pages, 2 figures, several references are adde

    Virtual Black Holes

    Get PDF
    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2S^2\times S^2 and K3K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2S^2\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix $\$ that does not factorise into an SS matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.Comment: 24p, LaTeX, 3 postscript figures included with epsf sent in a seperate uuencoded fil

    Epidemiologic Study of Dental Caries Experience and Between-Meal Eating Patterns

    Full text link
    The relationship between dental caries and between-meal snacks was investigated in a study of 1,486 high school students. The participants completed a questionnaire on between-meal habits and then were given dental examinations. The lack of differences in dental caries between racial and geographic groups was not related to the frequency of sucrose-containing, between-meal snacks.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66591/2/10.1177_00220345730520022501.pd

    Quantum lump dynamics on the two-sphere

    Get PDF
    It is well known that the low-energy classical dynamics of solitons of Bogomol'nyi type is well approximated by geodesic motion in M_n, the moduli space of static n-solitons. There is an obvious quantization of this dynamics wherein the wavefunction evolves according to the Hamiltonian H_0 equal to (half) the Laplacian on M_n. Born-Oppenheimer reduction of analogous mechanical systems suggests, however, that this simple Hamiltonian should receive corrections including k, the scalar curvature of M_n, and C, the n-soliton Casimir energy, which are usually difficult to compute, and whose effect on the energy spectrum is unknown. This paper analyzes the spectra of H_0 and two corrections to it suggested by work of Moss and Shiiki, namely H_1=H_0+k/4 and H_2=H_1+C, in the simple but nontrivial case of a single CP^1 lump moving on the two-sphere. Here M_1=TSO(3), a noncompact kaehler 6-manifold invariant under an SO(3)xSO(3) action, whose geometry is well understood. The symmetry gives rise to two conserved angular momenta, spin and isospin. A hidden isometry of M_1 is found which implies that all three energy spectra are symmetric under spin-isospin interchange. The Casimir energy is found exactly on the zero section of TSO(3), and approximated numerically on the rest of M_1. The lowest 19 eigenvalues of H_i are found for i=0,1,2, and their spin-isospin and parity compared. The curvature corrections in H_1 lead to a qualitatively unchanged low-level spectrum while the Casimir energy in H_2 leads to significant changes. The scaling behaviour of the spectra under changes in the radii of the domain and target spheres is analyzed, and it is found that the disparity between the spectra of H_1 and H_2 is reduced when the target sphere is made smaller.Comment: 35 pages, 3 figure

    N=4 supersymmetric Eguchi-Hanson sigma model in d=1

    Full text link
    We show that it is possible to construct a supersymmetric mechanics with four supercharges possessing not conformally flat target space. A general idea of constructing such models is presented. A particular case with Eguchi--Hanson target space is investigated in details: we present the standard and quotient approaches to get the Eguchi--Hanson model, demonstrate their equivalence, give a full set of nonlinear constraints, study their properties and give an explicit expression for the target space metric.Comment: LaTeX, 9 page

    Particle motion in the field of a five-dimensional charged black hole

    Full text link
    In this paper, we have investigated the geodesics of neutral particles near a five-dimensional charged black hole using a comparative approach. The effective potential method is used to determine the location of the horizons and to study radial and circular trajectories. This also helps us to analyze the stability of radial and circular orbits. The radius of the innermost stable circular orbits have also been determined. Contrary to the case of massive particles for which, the circular orbits may have up to eight possible values of specific radius, we find that the photons will only have two distinct values for the specific radii of circular trajectories. Finally we have used the dynamical systems analysis to determine the critical points and the nature of the trajectories for the timelike and null geodesics.Comment: 15 pages, accepted for publication in Astrophysics and Space Scienc

    Quasinormal modes for massless topological black holes

    Full text link
    An exact expression for the quasinormal modes of scalar perturbations on a massless topological black hole in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature, and the horizon geometry is assumed to have a negative constant curvature.Comment: CECS style, 11 pages, no figures. References adde

    A note on quasinormal modes: A tale of two treatments

    Full text link
    There is an apparent discrepancy in the literature with regard to the quasinormal mode frequencies of Schwarzschild-de Sitter black holes in the degenerate-horizon limit. On the one hand, a Poschl-Teller-inspired method predicts that the real part of the frequencies will depend strongly on the orbital angular momentum of the perturbation field whereas, on the other hand, the degenerate limit of a monodromy-based calculation suggests there should be no such dependence (at least, for the highly damped modes). In the current paper, we provide a possible resolution by critically re-assessing the limiting procedure used in the monodromy analysis.Comment: 11 pages, Revtex format; (v2) new addendum in response to reader comments, also references, footnote and acknowledgments adde

    Stability of multidimensional black holes: complete numerical analysis

    Get PDF
    We analyze evolution of gravitational perturbations of D-dimensional Schwarzschild, Reissner-Nordstr\"om, and Reissner-Nordstrom-de Sitter black holes. It is known that the effective potential for the scalar type of gravitational perturbations has negative gap near the event horizon. This gap, for some values of the parameters Q (charge), Lambda (cosmological constant) and D (number of space-time dimensions), cannot be removed by S-deformations. Thereby, there is no proof of (in)stability for those cases. In the present paper, by an extensive search of quasinormal modes, both in time and frequency domains, we shall show that spherically symmetric static black holes with arbitrary charge and positive (de Sitter) lambda-term are stable for D=5, 6, >...11. In addition, we give a complete numerical data for all three types (scalar, vector and tensor) of gravitational perturbations for multi-dimensional black holes with charge and Lambda-term. The influence of charge, Lambda-term and number of extra dimensions on black hole quasinormal spectrum is discussed.Comment: 12 pages, RevTe

    Interpolating between open and closed strings - a BSFT approach

    Get PDF
    We address the conjecture that at the tachyonic vacuum open strings get transformed into closed strings. We show that it is possible in the context of boundary string field theory to interpolate between the conventional open string theory, characterized by having the D25 brane as the boundary state, and an off-shell (open) string theory where the boundary state is identified with the closed string vacuum, where holomorphic and antiholomorphic modes decouple and where bulk vertex operator correlation functions are identical to those of the closed string.Comment: 13 pages;v2: references added;v3: version to appear in Phys. Lett.
    corecore