10 research outputs found

    CD8α is expressed by human monocytes and enhances FcγR-dependent responses

    Get PDF
    Abstract Background CD8α enhances the responses of antigen-specific CTL activated through TCR through binding MHC class I, favoring lipid raft partitioning of TCR, and inducing intracellular signaling. CD8α is also found on dendritic cells and rat macrophages, but whether CD8α enhances responses of a partner receptor, like TCR, to activate these cells is not known. TCR and FcR, use analogous or occasionally interchangeable signaling mechanisms suggesting the possibility that CD8α co-activates FcR responses. Interestingly, CD8α+ monocytes are often associated with rat models of disease involving immune-complex deposition and FcR-mediated pathology, such as arthritis, glomerulonephritis, ischaemia, and tumors. While rat macrophages have been shown to express CD8α evidence for CD8α expression by mouse or human monocytes or macrophages was incomplete. Results We detected CD8α, but not CD8β on human monocytes and the monocytic cell line THP-1 by flow cytometry. Reactivity of anti-CD8α mAb with monocytes is at least partly independent of FcR as anti-CD8α mAb detect CD8α by western blot and inhibit binding of MHC class I tetramers. CD8α mRNA is also found in monocytes and THP-1 suggesting CD8α is synthesized by monocytes and not acquired from other CD8α+ cell types. Interestingly, CD8α from monocytes and blood T cells presented distinguishable patterns by 2-D electrophoresis. Anti-CD8α mAb alone did not activate monocyte TNF release. In comparison, TNF release by human monocytes stimulated in a FcR-dependent manner with immune-complexes was enhanced by inclusion of anti-CD8α mAb in immune-complexes. Conclusion Human monocytes express CD8α. Co-engagement of CD8α and FcR enhances monocyte TNF release, suggesting FcR may be a novel partner receptor for CD8α on innate immune cells.</p

    Selective autophagy degrades DICER and AGO2 and regulates miRNA activity.

    Get PDF
    MicroRNAs (miRNAs) form a class of short RNAs (∼ 21 nucleotides) that post-transcriptionally regulate partially complementary messenger RNAs. Each miRNA may target tens to hundreds of transcripts to control key biological processes. Although the biochemical reactions underpinning miRNA biogenesis and activity are relatively well defined and the importance of their homeostasis is increasingly evident, the processes underlying regulation of the miRNA pathway in vivo are still largely elusive. Autophagy, a degradative process in which cytoplasmic material is targeted into double-membrane vacuoles, is recognized to critically contribute to cellular homeostasis. Here, we show that the miRNA-processing enzyme, DICER (also known as DICER1), and the main miRNA effector, AGO2 (also known as eukaryotic translation initiation factor 2C, 2 (EIF2C2)), are targeted for degradation as miRNA-free entities by the selective autophagy receptor NDP52 (also known as calcium binding and coiled-coil domain 2 (CALCOCO2)). Autophagy establishes a checkpoint required for continued loading of miRNA into AGO2; accordingly, NDP52 and autophagy are required for homeostasis and activity of the tested miRNAs. Autophagy also engages post-transcriptional regulation of the DICER mRNA, underscoring the importance of fine-tuned regulation of the miRNA pathway. These findings have implications for human diseases linked to misregulated autophagy, DICER- and miRNA-levels, including cancer

    Subtle differences in CD8α between monocytes and lymphocytes detected by 2-D electrophoresis

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "CD8α is expressed by human monocytes and enhances FcγR-dependent responses"</p><p>http://www.biomedcentral.com/1471-2172/8/12</p><p>BMC Immunology 2007;8():12-12.</p><p>Published online 1 Aug 2007</p><p>PMCID:PMC2000912.</p><p></p> , Western blot with a polyclonal anti-CD8α antibody after 2-D electrophoresis of monocytes and lymphocytes. Cell lysates of lymphocytes and monocytes from one donor were separated by adherence, halved and treated (bottom panels) or not treated (top panels) with neuraminidase before analysis. , Western blot with anti-CD8α mAb D9. , Neuraminidase treatment and western blot with D9 of lymphocyte lysate. Results are representative of experiments with three donors

    AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles

    No full text
    Summary: The autophagy pathway is an essential facet of the innate immune response, capable of rapidly targeting intracellular bacteria. However, the initial signaling regulating autophagy induction in response to pathogens remains largely unclear. Here, we report that AMPK, an upstream activator of the autophagy pathway, is stimulated upon detection of pathogenic bacteria, before bacterial invasion. Bacterial recognition occurs through the detection of outer membrane vesicles. We found that AMPK signaling relieves mTORC1-mediated repression of the autophagy pathway in response to infection, positioning the cell for a rapid induction of autophagy. Moreover, activation of AMPK and inhibition of mTORC1 in response to bacteria is not accompanied by an induction of bulk autophagy. However, AMPK signaling is required for the selective targeting of bacteria-containing vesicles by the autophagy pathway through the activation of pro-autophagic kinase complexes. These results demonstrate a key role for AMPK signaling in coordinating the rapid autophagic response to bacteria. : Autophagy is a degradative process that host cells use to cope with invading pathogens, but its earliest activation is unclear. Losier et al. describe a signaling pathway that is activated by the detection of extracellular bacteria-derived OMVs. This autophagy-initiating pathway results in selective targeting and degradation of bacteria rather than cytoplasmic components. Keywords: autophagy, AMPK, mTOR, ULK1, VPS34, xenophagy, OMV, Salmonella, outer membrane vesicle

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore