47 research outputs found

    Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations

    Get PDF
    The final published article can be found here: http://dx.doi.org/10.1038/ncomms5654This work was supported by KKL632 grant from the Kay Kendall Leukaemia Fund, Jerome Lejeune Foundation project grant 2011B-960, the Wellcome Trust Strategic Award WT 098330/Z/12/Z (The LonDownS Consortium) and the Lee Kong Chian School of Medicine, Nanyang Technological University-Singapore start-up funding grant M4230024 to D.N.; Swiss Cancer League (LSCC 2939-02-2012) and Dinu Lipatti 2014 grants to S.I.N.; SNF 144082, ERC 249968 and Foundation ‘ChildCare’ grants to S.E.A.; and by Cariparo bando ricerca pediatrica and by European commission (FP7 ENCCA, 261474, Trancan PER-2011-2353841) to G.B

    Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia

    Get PDF
    Relapse remains the leading cause of treatment failure in children with acute lymphoblastic leukaemia (ALL) undergoing allogeneic haematopoietic stem cell transplantation (HSCT). We retrospectively investigated the prognostic role of minimal residual disease (MRD) before and after HSCT in 119 children transplanted in complete remission (CR). MRD was measured by polymerase chain reaction in bone marrow samples collected pre-HSCT and during the first and third trimesters after HSCT (post-HSCT1 and post-HSCT3). The overall event-free survival (EFS) was 50%. The cumulative incidence of relapse and non-relapse mortality was 41% and 9%. Any degree of detectable pre-HSCT MRD was associated with poor outcome: EFS was 39% and 18% in patients with MRD positivity <1 × 10−3 and ≥1 × 10−3, respectively, versus 73% in MRD-negative patients (P < 0·001). This effect was maintained in different disease remissions, but low-level MRD had a very strong negative impact only in patients transplanted in second or further CR. Also, MRD after HSCT enabled patients to be stratified, with increasing MRD between post-HSCT1 and post-HSCT3 clearly defining cohorts with a different outcome. MRD is an important prognostic factor both before and after transplantation. Given that MRD persistence after HSCT is associated with dismal outcome, these patients could benefit from early discontinuation of immunosuppression, or pre-emptive immuno-therapy

    Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis.

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth

    Amplified segment in the 'Down syndrome critical region' on HSA21 shared between Down syndrome and euploid AML-M0 excludes RUNX1, ERG and ETS2.

    No full text
    Item does not contain fulltextChildren with Down syndrome have a 20- to 50-fold increased risk of acute lymphocytic or myeloid leukaemia. Whole or partial gains of chromosome 21 have been described in multiple childhood leukaemias, and have recently been reported as a likely primary event in B-precursor-acute lymphoblastic leukaemia. It is unclear which amplified gene(s) on chromosome 21 play a key role in leukaemia progression. We describe a minimal amplified segment within the so-called 'Down syndrome critical region' shared between two cases of AML-M0; a Down syndrome, and a constitutionally normal individual. Interestingly, the amplified region does not include the oncogenes RUNX1, ETS2 and ERG.1 april 201

    Comparative sequence analysis of incomplete DJH and TCR gene rearrangements in children with relapses of T-ALL

    No full text
    The detection of minimal residual disease (MRD) during the first phase of treatment can predict outcome in childhood acute lymphoblastic leukemia (ALL).1 Currently MRD detection in ALL patients provides important information in order to assign a tailored-treatment and the risk of an impending relapse. Nevertheless, the major treatment failure in ALL occurs predominantly in patients with T-cell ALL. This reflects especially a more therapy-resistance and a slower clearance of blasts of T-ALL in comparison with precursor-B-ALL.2 Therefore, the quantification of early response to therapy and the monitoring of MRD during and after treatment can greatly improve the outcome and long-term quality of life of these patients. In childhood ALL, detection of MRD with high sensitivity (ie 104, 105) can be achieved by quantitative PCR methods (RQ-PCR) of rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes.1,3 The usefulness of these specific PCR targets should give attention to the possible modification of Ig and TCR gene rearrangements that could occur during the course of disease, due to continue activity of the V(D)J recombinase enzymes in leukemic blast

    Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring

    No full text
    Detection of minimal residual disease (MRD), using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements as clone-specific targets, represents the most recent development in diagnosis and treatment of acute lymphoblastic leukaemia (ALL). Nevertheless, risk of false-negative results, due to secondary or ongoing rearrangements of Ig/TCR genes during the disease course, might hamper MRD detection. Therefore, to gain extensive information on clonal stability, we performed PCR-GeneScan analysis of Ig/TCR gene rearrangements at diagnosis and subsequent relapse in bone marrow samples from 53 childhood precursor-B-ALL patients. In addition, sequencing analysis of junctional regions at diagnosis and relapse provided a detailed insight in the stability and changes of Ig/TCR gene rearrangements during the disease course. At least one stable clonal Ig/TCR target was found in 94% of patients. In three patients complete differences in Ig/TCR rearrangements between diagnosis and relapse were observed, suggesting relapse with a new clone. At relapse, 71% of diagnostic clonal PCR targets was conserved. Since the comparison of Ig/TCR gene rearrangements at diagnosis and relapse in our precursor-B-ALL patients did not show significant difference in the stability of different clonal PCR targets (IGH, 70%; IGK, 71%; TCRD, 67%; TCRG, 75%), we conclude that there is no 'preferential' clone-specific target for MRD monitoring
    corecore