1,377 research outputs found

    Prevention of neurological injuries during mandibular third molar surgery: technical notes

    Get PDF
    Surgery to the mandibular third molar is common, and injuries to the inferior alveolar nerve and the lingual nerve are well-recognized complications of this procedure. The aim of these technical notes is to describe operative measures for reducing neurological complications during mandibular third molar surgery. The following procedure should be used to prevent damage to the inferior alveolar nerve: a well-designed mucoperiosteal flap, to obtain appropriate access to the surgical area; a conservative ostectomy on the distal and distal-lingual side; tooth sectioning, to facilitate its removal by decreasing the retention zones; tooth dislocation in the path of withdrawal imposed by the curvature of the root apex; and careful socket debridement, when the roots of the extracted tooth are in intimate contact with the mandibular canal. To prevent injury to the lingual nerve, it is important (I) to assess the integrity of the mandibular inner cortex and exclude the presence of fenestration, which could cause the dislocation of the tooth or its fragment into the sublingual or submandibular space; (II) to avoid inappropriate or excessive dislocation proceedings, in order to prevent lingual cortex fracture; (III) to perform horizontal mesial-distal crown sectioning of the lingually inclined tooth; (IV) to protect the lingual flap with a retractor showing the cortical ridge; and (V) to pass the suture not too apically and from the inner side in a buccal-lingual direction in the retromolar are

    G.I.S. technologies for data collection, management and visualization of large slope instabilities: two applications in the Western Italian Alps

    No full text
    International audienceLarge slope instabilities are gravitational phenomena whose main characteristics are the multi-km2 area extension and the complex geometrical, geomorphological and geomechanical settings. Several studies outlined their importance in spatial and temporal occurrence of natural hazards on wide mountain areas and their possible interaction in human activities. For the study of large slope instability and deep seated slope gravitational deformations in the Susa and Aosta Valleys (Western Italian Alps) a complete multiscale program (spatial and temporal) analysis has been performed, giving contributions to the reconstruction and settings of their possible evolution. A complex geodatabase has been created, including thematic elements from field-data collection (geomorphology, hydrology, lithology, structural geology) and instability events analysis from data archives and remote sensing images. To facilitate the management of a large amount of collected data a G.I.S. (Geographical Information System) has been developed, including two main levels of information: local and regional. Local information is mainly devoted to detailed geothematic mapping of single instability phenomena. Clot Brun case study is presented, where original and derived landslide features have been elaborated through arithmetical and statistical operations, in order to identify different instability zones and to assess displacements and state of activity through-time. Regional information collected for a landslide inventory of Aosta Valley (IFFI project) summarizes historical and remote sensing data, combined with metadata from local analysis, in order to assess spatial and temporal hazards. To avoid problems of data accuracy (quality and positioning) due to different source archives, a semi-automatic system for selection and validation of data has been created, based on their spatial characteristics (buffer analysis and control). G.I.S. technologies have been used to archive, manage and visualize collected data through 2-D and 3-D models of single case studies and regional distribution of large slope instabilities

    Geospatial Analysis and Remote Sensing from Airplanes and Satellites for Cultural Resources Management

    Get PDF
    Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management

    How Do Software Startups Pivot? Empirical Results from a Multiple Case Study

    Full text link
    In order to handle intense time pressure and survive in dynamic market, software startups have to make crucial decisions constantly on whether to change directions or stay on chosen courses, or in the terms of Lean Startup, to pivot or to persevere. The existing research and knowledge on software startup pivots are very limited. In this study, we focused on understanding the pivoting processes of software startups, and identified the triggering factors and pivot types. To achieve this, we employed a multiple case study approach, and analyzed the data obtained from four software startups. The initial findings show that different software startups make different types of pivots related to business and technology during their product development life cycle. The pivots are triggered by various factors including negative customer feedback.Comment: Conference publication, International Conference on Software Business (ICSOB'16), Sloveni

    SMEFT and the Drell-Yan Process at High Energy

    Full text link
    The Drell-Yan process is a copious source of lepton pairs at high energy and is measured with great precision at the Large Hadron Collider (LHC). Barring any new light particles, beyond the Standard Model effects can be studied in Drell-Yan production using an effective field theory. At tree level, new 4-fermion interactions dominate, while at one loop operators modifying 3-gauge boson couplings contribute effects that are enhanced at high energy. We study the sensitivity of the neutral Drell-Yan process to these dimension-6 operators and compare the sensitivity to that of W+W−W^+W^- pair production at the LHC.Comment: 13 pages, 4 figures. v2: version accepted for publication in PR

    Past-directed scalar field gradients and scalar-tensor thermodynamics

    Get PDF
    We refine and slightly enlarge the recently proposed first-orderthermodynamics of scalar-tensor gravity to include gravitational scalar fieldswith timelike and past-directed gradients. The implications and subtletiesarising in this situation are discussed and an exact cosmological solution ofscalar-tensor theory in first-order thermodynamics is revisited in light ofthese results.<br

    Scalar field as a perfect fluid: thermodynamics of minimally coupled scalars and Einstein frame scalar-tensor gravity

    Get PDF
    We revisit the analogy between a minimally coupled scalar field in general relativity and a perfect fluid, correcting previous identifications of effective temperature and chemical potential. This provides a useful complementary picture for the first-order thermodynamics of scalar-tensor gravity, paving the way for the Einstein frame formulation (which eluded previous attempts) and raises interesting questions to further develop the analogy

    The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope V. Optimal algorithms for planning multi-object spectroscopic observations

    Full text link
    We present an overview of the capabilities and key algorithms employed in the so-called eMPT software suite developed for planning scientifically optimized, multi-object spectroscopic (MOS) observations with the Micro-Shutter Array (MSA) of the Near-Infrared Spectrograph (NIRSpec) instrument on board the James Webb Space Telescope (JWST), the first multi-object spectrograph to operate in space. NIRSpec MOS mode is enabled by a programmable MSA, a regular grid of ~250,000 individual apertures that projects to a static, semi-regular pattern of available slits on the sky and makes the planning and optimization of an MSA observation a rather complex task. As such, the eMPT package is offered to the NIRSpec user community as a supplement to the MSA Planning Tool (MPT) included in the STScI Astronomer's Proposal Tool (APT) to assist in the planning of NIRSpec MOS proposals requiring advanced functionality to meet ambitious science goals. The eMPT produces output that can readily be imported and incorporated into the user's observing program within the APT to generate a customized MPT MOS observation. Furthermore, its novel algorithms and modular approach make it highly flexible and customizable, providing users the option to finely control the workflow and even insert their own software modules to tune their MSA slit masks to the particular scientific objectives at hand
    • …
    corecore