50 research outputs found

    Supported metal nanoparticles with tailored catalytic properties through sol immobilisation: applications for the hydrogenation of nitrophenols

    Get PDF
    The use of sol-immobilisation to prepare supported metal nanoparticles is an area of growing importance in heterogeneous catalysis; it affords greater control of nanoparticle properties compared to conventional catalytic routes e.g. impregnation. This work, and other recent studies, demonstrate how the properties of the resultant supported metal nanoparticles can be tailored by adjusting the conditions of colloidal synthesis i.e. temperature and solvent. We further demonstrate the applicability of these methods to the hydrogenation of nitrophenols using a series of tailored Pd/TiO2 catalysts, with low Pd loading of 0.2 wt%. Here, the temperature of colloidal synthesis is directly related to the mean particle diameter and the catalytic activity. Smaller Pd particles (2.2 nm, k = 0.632 min−1, TOF = 560 h−1) perform better than their larger counterparts (2.6 nm, k = 0.350 min−1, TOF = 370 h−1) for the hydrogenation of p-nitrophenol, with the catalyst containing smaller NPs found to have increased stability during recyclability studies, with high activity (>90% conversion after 5 minutes) maintained across 5 catalytic cycles

    The highly surprising behaviour of diphosphine ligands in iron-catalysed Negishi cross-coupling

    Get PDF
    Iron-catalysed cross-coupling is undergoing explosive development, but mechanistic understanding lags far behind synthetic methodology. Here, we find that the activity of iron–diphosphine pre-catalysts in the Negishi coupling of benzyl halides is strongly dependent on the diphosphine, but the ligand does not appear to be coordinated to the iron during turnover. This was determined using time-resolved in operando X-ray absorption fine structure spectroscopy employing a custom-made flow cell and confirmed by 31P NMR spectroscopy. While the diphosphine ligands tested are all able to coordinate to iron(II), in the presence of excess zinc(II)—as in the catalytic reaction—they coordinate predominantly to the zinc. Furthermore, combined synthetic and kinetic investigations implicate the formation of a putative mixed Fe–Zn(dpbz) species before the rate-limiting step of catalysis. These unexpected findings may not only impact the field of iron-catalysed Negishi cross-coupling, but potentially beyond to reactions catalysed by other transition metal/diphosphine complexes

    Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol

    Get PDF
    Poly(vinyl alcohol) (PVA)-stabilized Au nanoparticles (NPs) were synthesized by colloidal methods in which temperature variations (−75 to 75 °C) and mixed H2O/EtOH solvent ratios (0, 50, and 100 vol/vol) were used. The resulting Au NPs were immobilized on TiO2 (P25), and their catalytic performance was investigated for the liquid phase oxidation of glycerol. For each unique solvent system, there was a systematic increase in the average Au particle diameter as the temperature of the colloidal preparation increased. Generation of the Au NPs in H2O at 1 °C resulted in a high observed activity compared with current Au/TiO2 catalysts (turnover frequency = 915 h−1). Interestingly, Au catalysts with similar average particle sizes but prepared under different conditions had contrasting catalytic performance. For the most active catalyst, aberration-corrected high angle annular dark field scanning transmission electron microscopy analysis identified the presence of isolated Au clusters (from 1 to 5 atoms) for the first time using a modified colloidal method, which was supported by experimental and computational CO adsorption studies. It is proposed that the variations in the populations of these species, in combination with other solvent/PVA effects, is responsible for the contrasting catalytic properties

    Operando XAFS investigation on the effect of ash deposition on three-way catalyst used in Gasoline Particulate Filters and the effect of the manufacturing process on the catalytic activity

    Get PDF
    Platinum group metals (PGM) such as palladium and rhodium based catalysts are currently being implemented in Gasoline Particulate Filter (GPF) autoexhaust aftertreatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. This operando study follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2 and O2 was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard Reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 circleC. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 circleC post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance

    Lithium-directed transformation of amorphous iridium (oxy)hydroxides to produce active water oxidation catalysts

    Get PDF
    The oxygen evolution reaction (OER) is crucial to future energy systems based on water electrolysis. Iridium oxides are promising catalysts due to their resistance to corrosion under acidic and oxidizing conditions. Highly active iridium (oxy)­hydroxides prepared using alkali metal bases transform into low activity rutile IrO2 at elevated temperatures (>350 °C) during catalyst/electrode preparation. Depending on the residual amount of alkali metals, we now show that this transformation can result in either rutile IrO2 or nano-crystalline Li-intercalated IrO x . While the transition to rutile results in poor activity, the Li-intercalated IrO x has comparative activity and improved stability when compared to the highly active amorphous material despite being treated at 500 °C. This highly active nanocrystalline form of lithium iridate could be more resistant to industrial procedures to produce PEM membranes and provide a route to stabilize the high populations of redox active sites of amorphous iridium (oxy)­hydroxides

    Effect of Particle Size and Support Type on Pd Catalysts for 1,3-Butadiene Hydrogenation

    Get PDF
    Pd nanoparticles supported on SiO 2 , Si 3 N 4 and Al 2 O 3 were studied to examine the effect of particle size and support type on the hydrogenation of 1,3-butadiene. Pd nanoparticles were produced using a reverse micelle method resulting in particles with a remarkably small particle size distribution (σ < < 1 nm). The support type and particle size were observed to affect both catalytic activity and product selectivity. All catalysts showed a decrease of their activity with time on stream, paired with an increase in selectivity to butenes (1-butene and cis/trans-2-butene) from a product stream initially dominated by n-butane. In situ XAFS demonstrated a correlation between the formation of palladium hydride and n-butane production in the early stages (~ 1 h) of reaction. The extent of palladium hydride formation, as well as its depletion with time on stream, was dependent on both particle size and support type. Metallic Pd was identified as the species selective towards the production of butenes
    corecore