25 research outputs found

    The genomic landscape of breast cancer brain metastases: a systematic review.

    Get PDF
    Breast cancer brain metastases are an increasing clinical problem. Studies have shown that brain metastases from breast cancer have a distinct genomic landscape to that of the primary tumour, including the presence of mutations that are absent in the primary breast tumour. In this Review, we aim to review and evaluate genomic sequencing data for breast cancer brain metastases by searching PubMed, Embase, and Scopus for relevant articles published in English between database inception and May 30, 2020. Extracted information includes data for mutations, receptor status (eg, immunohistochemistry and Prediction Analysis of Microarray 50 [PAM50]), and copy number alterations from published manuscripts and supplementary materials. Of the 431 articles returned by the database search, 13 (3%) breast cancer brain metastases sequencing studies, comprising 164 patients with sequenced brain metastases, met all our inclusion criteria. We identified 268 mutated genes that were present in two or more breast cancer brain metastases samples. Of these 268 genes, 22 (8%) were mutated in five or more patients and pathway enrichment analysis showed their involvement in breast cancer-related signalling pathways, regulation of gene transcription, cell cycle, and DNA repair. Actionability analysis using the Drug Gene Interaction Database revealed that 15 (68%) of these 22 genes are actionable drug targets. In addition, immunohistochemistry and PAM50 data showed receptor discordancy between primary breast cancers and their paired brain metastases. This systematic review provides a detailed overview of the most commonly mutated genes identified in samples of breast cancer brain metastases and their clinical relevance. These data highlight the differences between primary breast cancers and brain metastases and the importance of acquiring and analysing brain metastasis samples for further study

    Low leukotriene B4 receptor 1 leads to ALOX5 downregulation at diagnosis of chronic myeloid leukemia

    Get PDF
    ALOX5 is implicated in chronic myeloid leukemia development in mouse leukemic stem cells, but its importance in human chronic myeloid leukemia is unknown. Functional ALOX5 was assessed using an LTB4 ELISA and ALOX5, and LTB4R1 mRNA expression was determined via a TaqMan gene expression assay. LTB4R1 and 5-LOX protein levels were assessed by cell surface flow cytometry analysis. At diagnosis ALOX5 was below normal in both blood and CD34(+) stem cells in all patients. On treatment initiation, ALOX5 levels increased in all patients except those who were destined to progress subsequently to blast crisis. LTB4 levels were increased despite low ALOX5 expression, suggesting that the arachidonic acid pathway is functioning normally up to the point of LTB4 production. However, the LTB4 receptor (BLT1) protein in newly diagnosed patients was significantly lower than after a period of treatment (P<0.0001). The low level of LTB4R1 at diagnosis explains the downregulation of ALOX5. In the absence of LTB4R1, the arachidonic acid pathway intermediates (5-HEPTE and LTA4) negatively regulate ALOX5. ALOX5 regulation is aberrant in chronic myeloid leukemia patients and may not be important for the development of the disease. Our data suggest caution when extrapolating mouse model data into human chronic myeloid leukemia

    Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer.

    Get PDF
    BACKGROUND: Activating transcription factor-2 (ATF2), a member of the leucine zipper family of DNA binding proteins, has been implicated as a tumour suppressor in breast cancer. However, its exact role in breast cancer endocrine resistance is still unclear. We have previously shown that silencing of ATF2 leads to a loss in the growth-inhibitory effects of tamoxifen in the oestrogen receptor (ER)-positive, tamoxifen-sensitive MCF7 cell line and highlighted that this multi-faceted transcription factor is key to the effects of tamoxifen in an endocrine sensitive model. In this work, we explored further the in vitro role of ATF2 in defining the resistance to endocrine treatment. MATERIALS AND METHODS: We knocked down ATF2 in TAMR, LCC2 and LCC9 tamoxifen-resistant breast cancer cell lines as well as the parental tamoxifen sensitive MCF7 cell line and investigated the effects on growth, colony formation and cell migration. We also performed a microarray gene expression profiling (Illumina Human HT12_v4) to explore alterations in gene expression between MCF7 and TAMRs after ATF2 silencing and confirmed gene expression changes by quantitative RT-PCR. RESULTS: By silencing ATF2, we observed a significant growth reduction of TAMR, LCC2 and LCC9 with no such effect observed with the parental MCF7 cells. ATF2 silencing was also associated with a significant inhibition of TAMR, LCC2 and LCC9 cell migration and colony formation. Interestingly, knockdown of ATF2 enhanced the levels of ER and ER-regulated genes, TFF1, GREB1, NCOA3 and PGR, in TAMR cells both at RNA and protein levels. Microarray gene expression identified a number of genes known to mediate tamoxifen resistance, to be differentially regulated by ATF2 in TAMR in relation to the parental MCF7 cells. Moreover, differential pathway analysis confirmed enhanced ER activity after ATF2 knockdown in TAMR cells. CONCLUSION: These data demonstrate that ATF2 silencing may overcome endocrine resistance and highlights further the dual role of this transcription factor that can mediate endocrine sensitivity and resistance by modulating ER expression and activity

    Genomic profiling using the UltraSEEK panel identifies discordancy between paired primary and breast cancer brain metastases and an association with brain metastasis-free survival

    Get PDF
    PurposeBrain metastases (BM) are an increasing clinical problem. This study aimed to assess paired primary breast cancers (BC) and BM for aberrations within TP53, PIK3CA, ESR1, ERBB2 and AKT utilising the MassARRAY® UltraSEEK® technology (Agena Bioscience, San Diego, USA).MethodsDNA isolated from 32 paired primary BCs and BMs was screened using the custom UltraSEEK® Breast Cancer Panel. Data acquisition and analysis was performed by the Agena Bioscience Typer software v4.0.26.74.ResultsMutations were identified in 91% primary BCs and 88% BM cases. TP53, AKT1, ESR1, PIK3CA and ERBB2 genes were mutated in 68.8%, 37.5%, 31.3%, 28.1% and 3.1% respectively of primary BCs and in 59.4%, 37.5%, 28.1%, 28.1% and 3.1% respectively of BMs. Differences in the mutations within the 5 genes between BC and paired BM were identified in 62.5% of paired cases. In primary BCs, ER-positive/HER2-negative cases harboured the most mutations (70%), followed by ER-positive/HER2-positive (15%) and triple-negatives (13.4%), whereas in BMs, the highest number of mutations was observed in triple-negative (52.5%), followed by ER-positive/HER2-negative (35.6%) and ER-negative/HER2-positive (12%). There was a significant association between the number of mutations in the primary BC and breast-to-brain metastasis-free survival (p = 0.0001) but not with overall survival (p = 0.056).ConclusionThese data demonstrate the discordancy between primary BC and BM, as well as the presence of clinically important, actionable mutations in BCBM. The UltraSEEK® Breast Cancer Panel provides a tool for BCBM that can be utilised to direct more tailored treatment decisions and for clinical studies investigating targeted agents

    A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival

    Get PDF
    Breast cancer brain metastasis (BCBM) is an area of unmet clinical need. MicroRNAs (miRNAs) have been linked to the metastatic process in breast cancer (BC). In this study, we aim to determine differentially-expressed miRNAs utilising primary BCs that did not relapse (BCNR, n = 12), primaries that relapsed (BCR) and their paired (n = 40 pairs) brain metastases (BM) using the NanoString™ nCounter™ miRNA Expression Assays. Significance analysis of microarrays identified 58 and 11 differentially-expressed miRNAs between BCNR vs BCR and BCR vs BM respectively and pathway analysis revealed enrichment for genes involved in invasion and metastasis. Four miRNAs, miR-132-3p, miR-199a-5p, miR-150-5p and miR-155-5p, were differentially-expressed within both cohorts (BCNR-BCR, BCR-BM) and receiver-operating characteristic curve analysis (p = 0.00137) and Kaplan-Meier survival method (p = 0.0029, brain metastasis-free survival; p = 0.0007, overall survival) demonstrated their potential use as prognostic markers. Ingenuity pathway enrichment linked them to the MET oncogene, and the cMET protein was overexpressed in the BCR (p < 0.0001) and BM (p = 0.0008) cases, compared to the BCNRs. The 4-miRNAs panel identified in this study could be potentially used to distinguish BC patients with an increased risk of developing BCBM and provide potential novel therapeutic targets, whereas cMET-targeting warrants further investigation in the treatment of BCBM

    Human papillomaviruses in squamous intraepithelial lesions of the cervix

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN057897 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The role of CPT1A as a biomarker of breast cancer progression: a bioinformatic approach

    No full text
    AbstractBreast cancer is the commonest malignancy of women and with its incidence on the rise, the need to identify new targets for treatment is imperative. There is a growing interest in the role of lipid metabolism in cancer. Carnitine palmitoyl-transferase-1 (CPT-1); the rate limiting step in fatty acid oxidation, has been shown to be overexpressed in a range of tumours. There are three isoforms of CPT-1; A, B and C. It is CPT-1A that has been shown to be the predominant isoform which is overexpressed in breast cancer. We performed a bioinformatic analysis using readily available online platforms to establish the prognostic and predictive effects related to CPT-1A expression. These include the KM plotter, the Human Protein Atlas, the cBioPortal, the G2O, the MethSurvand the ROC plotter. A Network analysis was performed using the Oncomine platform and signalling pathways constituting the cancer hallmarks, including immune regulation as utilised by NanoString. The epigenetic pathways were obtained from the EpiFactor website. Spearman correlations (r) to determine the relationship between CPT-1A and the immune response were obtained using the TISIDB portal. Overexpression of CPT-1A largely confers a worse prognosis and CPT-1A progressively recruits a range of pathways as breast cancer progresses. CPT-1A’s interactions with cancer pathways is far wider than previously realised and includes associations with epigenetic regulation and immune evasion pathways, as well as wild-type moderate to high penetrant genes involved in hereditary breast cancer. Although CPT-1A genomic alterations are detected in 9% of breast carcinomas, both the alteration and the metagene associated with it, confers a poor prognosis. CPT-1A expression can be utilised as a biomarker of disease progression and as a potential therapeutic target.</jats:p
    corecore