150 research outputs found

    Spiro-containing derivatives show antiparasitic activity against trypanosoma brucei through inhibition of the trypanothione reductase enzyme

    Get PDF
    Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypa-nothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypano-soma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461’) and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus represent-ing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections

    A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition

    Get PDF
    Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin–trypanothione reductase–NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis

    Unravelling the molecular mechanism of Sorcin (SOluble Resistance-related Calcium binding proteIN)-dependent resistance to chemotherapeutic drugs in cancer and its network of interaction

    Get PDF
    Sorcin is calcium-binding oncoprotein overexpressed in several human tumors, is a marker of Multi-Drug Resistance (MDR), is highly expressed in chemoresistant cell lines, and confers MDR when overexpressed. Sorcin gene is in the same amplicon of glycoprotein-P (mdr1) and its silencing increases cancer cell sensitivity to chemotherapeutic drugs. Recently we solved the crystal structure of Sorcin in the apo and calcium-bound forms. Upon calcium binding, a large conformational change occurs, with the exposure of hydrophobic surfaces, that allows Sorcin interaction with molecular targets, some of them unravelled by a cutting-edge technique called Proteomic Peptide Phage Display (ProPPD). To elucidate Sorcin-dependent chemoresistance mechanisms, we: - used H1299 lung cancer cells, which express high amount of Sorcin; - silenced Sorcin expression through siRNA; - treated cells with doxorubicin to elucidate changes in the uptake process and in the biological response; - tested Sorcin affinity for doxorubicin through Surface Plasmon Resonance and fluorimetry experiments; -solved the crystal structure of doxorubicin-bound Sorcin. Our results show that, by direct and specific binding of doxorubicin, Sorcin can act as a buffer for the drug in the cytoplasm, enhance its accumulation outside the nucleus and then its extrusion through MDR1 pump. Indeed Sorcin silencing, in our cancer cells, increases the sensitivity towards the chemotherapeutic drug and subsequently cell death upon treatment

    Information Transfer in the Penta-EF-hand Protein Sorcin Does Not Operate via the Canonical Structural/Functional Pairing A STUDY WITH SITE-SPECIFIC MUTANTS

    Get PDF
    Sorcin is a typical penta-EF-hand protein that participates in Ca2+-regulated processes by translocating reversibly from cytosol to membranes, where it interacts with different target proteins in different tissues. Binding of two Ca2+/monomer triggers translocation, although EF1, EF2, and EF3 are potentially able to bind calcium at micromolar concentrations. To identify the functional pair, the conserved bidentate -Z glutamate in these EF-hands was mutated to yield E53Q-, E94A-, and E124A-sorcin, respectively. Limited structural perturbations occur only in E124A-sorcin due to involvement of Glu-124 in a network of interactions that comprise the long D helix connecting EF3 to EF2. The overall affinity for Ca2+ and for two sorcin targets, annexin VII and the ryanodine receptor, follows the order wild-type > E53Q- > E94A- > E124A-sorcin, indicating that disruption of EF3 has the largest functional impact and that disruption of EF2 and EF1 has progressively smaller effects. Based on this experimental evidence, EF3 and EF2, which are not paired in the canonical manner, are the functional EF-hands. Sorcin is proposed to be activated upon Ca2+ binding to EF3 and transmission of the conformational change at Glu-124 via the D helix to EF2 and from there to EF1 via the canonical structural/functional pairing. This mechanism may be applicable to all penta-EF-hand proteins

    The central role of gut microbiota in drug metabolism and personalized medicine

    Get PDF
    The gut microbiota is now considered as a symbiotic organ playing an important role in human health and disease development and has been recently recognized as a modulator of drug metabolism and toxicity. Here, we briefly discuss new findings describing how the gut microbiota is now considered to be a central player in drug metabolism and personalized medicine

    Innovative approach for a classic target: fragment screening on trypanothione reductase reveals new opportunities for drug design

    Get PDF
    Trypanothione reductase (TR) is a key factor in the redox homeostasis of trypanosomatid parasites, critical for survival in the hostile oxidative environment generated by the host to fight infection. TR is considered an attractive target for the development of new trypanocidal agents as it is essential for parasite survival but has no close homolog in humans. However, the high efficiency and turnover of TR challenging targets since only potent inhibitors, with nanomolar IC50, can significantly affect parasite redox state and viability. To aid the design of effective compounds targeting TR, we performed a fragment-based crystal screening at the Diamond Light Source XChem facility using a library optimized for follow-up synthesis steps. The experiment, allowing for testing over 300 compounds, resulted in the identification of 12 new ligands binding five different sites. Interestingly, the screening revealed the existence of an allosteric pocket close to the NADPH binding site, named the "doorstop pocket" since ligands binding at this site interfere with TR activity by hampering the "opening movement" needed to allow cofactor binding. The second remarkable site, known as the Z-site, identified by the screening, is located within the large trypanothione cavity but corresponds to a region not yet exploited for inhibition. The fragments binding to this site are close to each other and have some remarkable features making them ideal for follow-up optimization as a piperazine moiety in three out of five fragments

    Not only P-glycoprotein: amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins

    Get PDF
    The development of drug resistance continues to be a dominant hindrance toward curative cancer treatment. Overexpression of a wide-spectrum of ATP-dependent efflux pumps, and in particular of ABCB1 (P-glycoprotein or MDR1) is a well-known resistance mechanism for a plethora of cancer chemotherapeutics including for example taxenes, anthracyclines, Vinca alkaloids, and epipodopyllotoxins, demonstrated by a large array of published papers, both in tumor cell lines and in a variety of tumors, including various solid tumors and hematological malignancies. Upon repeated or even single dose treatment of cultured tumor cells or tumors in vivo with anti-tumor agents such as paclitaxel and doxorubicin, increased ABCB1 copy number has been demonstrated, resulting from chromosomal amplification events at 7q11.2-21 locus, leading to marked P-glycoprotein overexpression, and multidrug resistance (MDR). Clearly however, additional mechanisms such as single nucleotide polymorphisms (SNPs) and epigenetic modifications have shown a role in the overexpression of ABCB1 and of other MDR efflux pumps. However, notwithstanding the design of 4 generations of ABCB1 inhibitors and the wealth of information on the biochemistry and substrate specificity of ABC transporters, translation of this vast knowledge from the bench to the bedside has proven to be unexpectedly difficult. Many studies show that upon repeated treatment schedules of cell cultures or tumors with taxenes and anthracyclines as well as other chemotherapeutic drugs, amplification, and/or overexpression of a series of genes genomically surrounding the ABCB1 locus, is observed. Consequently, altered levels of other proteins may contribute to the establishment of the MDR phenotype, and lead to poor clinical outcome. Thus, the genes contained in this ABCB1 amplicon including ABCB4, SRI, DBF4, TMEM243, and RUNDC3B are overexpressed in many cancers, and especially in MDR tumors, while TP53TG1 and DMTF1 are bona fide tumor suppressors. This review describes the role of these genes in cancer and especially in the acquisition of MDR, elucidates possible connections in transcriptional regulation (co-amplification/repression) of genes belonging to the same ABCB1 amplicon region, and delineates their novel emerging contributions to tumor biology and possible strategies to overcome cancer MDR

    Roles of sorcin in drug resistance in cancer: one protein, many mechanisms, for a novel potential anticancer drug target

    Get PDF
    The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named “resistance-related” because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules

    Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target

    Get PDF
    The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named “resistance-related” because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules
    corecore