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1.1 Calcium importance in cells and the role of Ca2+ storage  

Calcium (Ca2+) has multifaceted role in cell since it is capable to regulate 

many biological processes. The versatility of calcium signaling is 

achieved in several fashions enabling it to operate in a wide dynamic 

range. 

Ca2+ is involved in cytoskeletal assembly/disassembly, protein folding, 

cell signaling, vesicle trafficking, muscle contraction, neurotransmission, 

apoptosis and necrosis etc.; thus its intracellular concentration ([Ca2+]i) 

has to be fine-tuned in order to control every cellular process. 

[Ca2+]i at rest is generally kept at about 100 nM concentration, in contrast 

to the extracellular space and the subcellular compartments or calcium 

stores, where the concentration of the ion are respectively about 1 mM 

and 100 PM. For this reason the interplay between these compartments is 

essential for cell functions (Kaufman RJ et al. 2014). 

To this end the cells take advantage of different calcium binding proteins 

(CaBP) that cooperate to regulate intracellular calcium concentration and 

to modulate several cellular functions. 

Among these proteins there are:  

-calcium channels or voltage operated channels (VOCs),  

-calcium pumps and exchangers (SERCA, PMCA and Na+/Ca2+ 

exchangers), 

- calcium buffers (parvalbumin, calbinding, calretinin, calsequestin, 

calreticulin), 
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-calcium sensors (mostly EF-hand proteins, Calmodulin) 

Besides proteins that binds directly this ion, with higher or lower affinity, 

there are also a large number of cell receptors as G-protein coupled 

receptors (GPCRs) and protein tyrosine kinase-linked receptors (PTKRs) 

that are coupled to different isoforms of phospholipase C (PLC), that 

generates inositol 1,4,5-triphosphate (InsP3), able to mobilize calcium as 

second messenger; as well as calmodulin-dependent kinases (CaMKs) 

and phosphatases as calcineurin, involved in calcium-dependent cell 

processes and gene regulation (Berridge MJ, 2011; Berridge MJ 2003). 

Therefore it has been largely reported that the unbalance in calcium 

signaling and intracellular concentration can bring to several diseases, as 

cardio-pathological and neurodegenerative conditions (Carafoli E. et al, 

2003). 

The most interesting interplay in the regulation of [Ca2+]i is played by 

subcellular compartments also known as cell calcium storages: in 

particular, mitochondrion and endo/sarcoplasmic reticulum (ER/SR). 

Mitochondria have two membrane layers. The outer membrane is 

generally more permeable to ions and small molecules and has voltage-

dependent anion-selective channels (VDACs), whom role in calcium flux 

is still under debate, but together with IP3-receptors (IP3R) and a protein 

chaperone called GRP75 can regulate the ion flux between the 

mitochondrion and ER, through the so called mitochondria-associated 

membranes (MAMs). MAMs consist of proteins and lipid biosynthetic 

enzymes connected reversibly to mitochondrion (Vance JE, 2014). They 

include calcium transfer channels, IP3R, VDAC and the chaperone 
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GRP75, and allow efficient calcium transfer from ER to mitochondrion 

(Poston CN et al., 2011). 

In contrast, the inner membrane needs specific transporters to ensure the 

intake of calcium in the matrix, the mitochondrial calcium uniporter 

(MCU). 

The endoplasmic reticulum regulates calcium concentration through a 

variety of proteins that bind calcium with low affinity but high binding-

capacity, i.e. the calcium buffers. These proteins are mostly protein 

chaperones: calreticulin (CRT), calnexin (CNX), protein disulfide 

isomerase (PDI), BiP/GRP78.  

Ion influx is regulated by the sarco/endoplasmic reticulum calcium 

ATPase (SERCA), while calcium efflux from the ER can be driven by 

ryanodine receptors (RYRs) (Kaufman RJ et al. 2014). 

The physiological [Ca2+]ER allows protein folding process to work 

properly in the ER, and [Ca2+]mit is essential for the oxidative 

phosphorylation and mitochondrion bioenergetics; indeed the ion flux 

between the two compartments is crucial. 

Conditions that prevent Ca2+ transfer from the ER to mitochondria 

include overexpression of anti-apoptotic proteins such as BCL-2 and 

BCL-XL and constitute survival signaling. In case of protein misfolding, 

the mitochondrion can be overloaded with calcium, leading to the 

stimulation of respiration and thus the production of reactive oxygen 

species (ROS), together with the activation of the pro-apoptotic signal. 
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As summarized by Kaufman in 2014 (Figure 1) calcium homeostasis is 

central to all cellular functions and the tuning of its concentration has a 

pivotal role in the balance between cell survival and death. 

 

 Figure 1: Schematic representation of how [Ca2+] can influence protein folding in the ER that 
modulates mitochondrial ATP and ROS production. Protein folding in the ER requires Ca2+ and 
ATP for chaperone function. Misfolded proteins may sequester protein chaperones, which 
facilitate the opening of Ca2+ channels to initiate Ca2+ transfer to mitochondria or to stimulate 
oxidative phosphorylation. Ca2+ transfer occurs through the activity of several Ca2+ channels that 
include the ER localized inositol-1,4,5-triphosphate receptors (IP3Rs), as well as the ryanodine 
receptors (RyRs) and the mitochondrial-localized voltage-dependent anion channel (VDAC) and 
the mitochondrial Ca2+ uniporter complex MCU. Once Ca2+ crosses the outer mitochondrial 
membrane (OMM), it can cause depolarization of the inner mitochondrial permeability transition 
pore (MPTP) and induction of apoptotic stimuli. As Ca2+ accumulates in mitochondria, cells are 
predisposed to disruption of the electron transport chain (ETC) to produce ROS, Mitochondrial 
permeability transition pore (MPTP), mitochondrial swelling, disruption of the OMM, release of 
cytochrome c and apoptosome components leading to caspase activation and apoptosis. Finally, in 
addition to superoxide production from the ETC, disulfide bond formation mediated by the protein 
thiol-disulfide isomerases (PDI) and ER oxidase 1 (ERO1) generates hydrogen peroxide upon 
electron transport to molecular O2 as the acceptor. The balance between the amount of Ca2+ stored 
in the ER lumen and the amount loaded  into the mitochondrial matrix may be a determinant in the 
decision between survival and death. (Kaufman et al.2014) 
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1.2 Sorcin, a Penta EF-hand (PEF) protein that handles calcium 
intracellular concentration in cells: structure, activation, 
localization 

The EF-hand is a helix-loop-helix structural motif where the two D-

helices are connected by a loop that contains negatively charged residues, 

as aspartate and glutamate, to coordinate calcium (Kawasaki H et al., 

1995). Canonical EF-hand proteins have a loop of 12 aminoacids  and the 

coordination of the ion takes place with a symmetry of a pentagonal 

bipyramid. The residues responsible for the coordination of calcium ions 

are well conserved and correspond to the positions X, Y, Z, -Y, -X, -Z 

(Figure 2). 
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Figure 2: EF-hand structural motif. (Top) Schematic representation of the helix-loop-helix EF-hand 
motif and a scheme of how the coordination of the ion takes place. The residues in the loop are 
generally conserved among the proteins containing this motif, and generally the –Z positions contain 
acidic residues (D, E) able to coordinate calcium. (Bottom) The position of these residues is highlighted 
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on a sequence alignment of Penta-EF hand proteins; identical or similar residues are in bold. (Ilari A et 
al. 2002).  

Usually the proteins that utilize this motif present an even number of EF-

hands, that are structurally and functionally paired. The most known example 

of EF-hand protein is calmodulin (CaM), which has two pairs of EF-hands; 

an EF-hand couple is located at the N-terminal and another one is at the C-

terminal. Both motifs are able to bind calcium, although the C-terminal 

region has higher affinity for calcium (Meador et al., 1992; Meador et al., 

1993; Andersson et al., 1983; Crouch and Klee, 1980). 

Sorcin, i.e. SOluble Resistance-related Calcium binding proteIN, is a small 

globular 22 KDa protein belonging to the Penta EF-hand (PEF) protein 

family, able to bind calcium through EF-hand motifs. This family includes: 

Sorcin, calpains, PDCD6 (or ALG-2), grancalcin and peflin (Maki M., et al. 

2002). The PEF proteins are involved in different cellular processes, they 

exert different functions but they share quite high sequence identity; Sorcin is 

30% identical to calpain domain VI, 36% to PDCD6 and 60% to grancalcin. 

This sequence conservation indicates that these proteins can share a similar 

overall fold. Besides the sequence and structural similarity, PEF proteins 

share other common features, as:  

x a flexible and hydrophobic Gly/Pro-rich N-terminal domain,   

x a C-terminal domain containing the five EF-hand motifs;  

x functional and structural pairing occurs in EF1-EF2 hands and EF3-

EF4 hands;  

x PEF proteins are dimers, in which monomer-monomer association 

occurs through the unpaired C-terminal EF5 hand;  
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x PEF proteins share the same mechanism of activation: upon calcium 

binding, a conformational change occurs enabling the translocation of 

the protein to the membrane. 

The N-terminal domain is often short and flexible, although, in the case of 

the large subunit of calpains, it can be rather complex, and include a protease 

domain. The C-terminal, calcium-binding domain, is rather well conserved 

among the PEF proteins (Figure 3). 

 

 
 
Figure 3: Sequence alignment of human PEF proteins of known crystal structures. Sorcin 
(NP_003121), grancalcin (NP_036330), PDCD6 (NP_037364), and small and large M-calpain chains 
are shown. The residues in the N-terminal domain are indicated as lowercase; the residues of the C-
terminal calcium binding domain are indicated as uppercase. Structural alignment of EF-hands and of 
alpha-helices is reported. Glu53, Glu94, Trp99, Trp105, Phe112 and Glu124 are indicated in bold and 
blue (Colotti et al. 2014). 
 

However, despite the sequence and structural conservation, there is no 

common mode of information transfer within the PEF family, which exert 

diverse cellular function, even if an overall mechanism of action can be 

proposed: upon calcium binding, PEF proteins translocate to the membranes 

where the proteins usually exhibit their different functions. 

The intrinsic ability of the EF-hand motifs to have different binding affinities 

for calcium make these proteins highly versatile calcium sensors, able to 
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carry out many different functions and regulate a wide range of cell 

processes. 

To better understand the role of Sorcin in calcium handling in cellular 

processes it is worthy to better present the relationship between its structure 

and mechanism of activation, together with its localization in the cell. 

Sorcin structure and mechanism of activation 

As the name suggest, Sorcin (SOluble Resistance-related Calcium binding 

proteIN) has been firstly studied for its role in drug resistance in cancer, 

because of its co-amplification with the pump P-gp (Van der Bliek et al. 

1986) and it is well known as a calcium binding protein.  

Sorcin gene (SRI) is located in the chromosome 7q21 and the transcription 

gives rise to four alternative isoforms, where the isoform A is the primary 

transcript, while B, C and D are shorter forms lacking of parts of the N-

terminal domain and/or the final residues of the C-terminal domain (Colotti 

G et al., 2014). It is still unclear whether these different forms can have 

additional function and localization as reported by Maddalena F. and 

coworkers (2013) and Landriscina M (2010). 

Sorcin is largely distributed among the vertebrates and the sequence 

conservation appears to be quite high among the species; for example, the 

mouse protein has just 8 aminoacidic differences compared to the human one. 

Furthermore, Sorcin can nearly be considered ubiquitous, since it is 

expressed in every human tissue (MOPED, PaxDb), with particular spikes in 

brain, heart, bone, B- and T-lymphocytes, monocytes, kidney, breast and 

skin. It has to be noted that the majority of those tissues require calcium for 

their physiology and cell signaling. 
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From a structural point of view, Sorcin belongs to the small family PEF 

proteins, and it is a homodimer (Xie X. et al., 2001; Ilari A et al., 2002), 

although heterodimerization with grancalcin is reported (Hansen C et al., 

2003). 

The first Sorcin structure was solved by Xie X and coworkers in 2001, and it 

was the calcium-free human protein, obtained at a resolution of 2.2 Å. 

Each Sorcin monomer is composed by two domains, i.e. the flexible N-

terminal domain (1-32) rich in glycines and prolines residues, and the C-

terminal domain (33-198) containing the five EF-hands and thus called 

Sorcin calcium binding domain (SCBD). Only the last five residues (28-32) 

of the N-terminal domain appear to be structured in the apo form of the 

protein (Xie X et al., 2001; Franceschini S et al., 2008). The SCBD has a 

globular fold and contains 8 D-helices (A-H) which form 5 EF-hand motifs 

(EF1-5). The EF-hands pair via short β-sheets: EF1 is associated with EF2, 

EF3 pairs with EF4, and the odd EF5 pairs with another EF5, belonging to 

another Sorcin monomer, forming a large part of the dimerization interface. 

The Sorcin dimer is thus the structural protein unit, containing five EF pairs. 

Helices D and G are long and rigid structures that connect different pairs of 

EF-hands (helix D belongs to both EF2 and EF3; helix G is part of EF4 and 

EF5), and serve to propagate the conformational change, induced by the 

binding of calcium, to the whole protein (Figure 4). 
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Figure 4: Sorcin sequence and structure. (a) Sorcin aminoacidic sequence showing the structural EF-
hand motifs in the SCBD and the flexible Pro-Gly-rich N-terminal region. (b) X-ray crystal structure of 
the human apo-SCBD homodimer (left) vs monomer structure (right) (PDB:1JUO). In both the panels 
the residues involved in the interactions with targets are colored in blue (Ilari A et al. 2002). The 
residues mutated to study the mechanism of action of Sorcin are underlined (W99, W105, E53, E94, 
E124, F112).The D helix is colored in blue as the W residues, while F112 is green and E124 is in red. 
(Colotti et al. 2014) 
   

SCBD can be divided in two subdomains: EF1-3 (residues 33–134), 

composed by three EF-hands that bind calcium at micromolar concentration 

(Mella M et al., 2003), and EF4-5 (residues 135–198), which does not bind 

calcium with high affinity, but mediates dimerization. Sedimentation 
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equilibrium analysis showed that Sorcin forms dimers in the absence of 

calcium (Zamparelli et al. 2000).  

In EF-hand proteins, calcium binding determines the transition from a 

“closed” conformation to an “open” conformation (Kawasaki H et al., 1995). 

Addition of calcium quenches tryptophan fluorescence (Meyers et al. 1995), 

indicating that calcium binding produces a conformational change that results 

in the exposure of buried hydrophobic residues, increases exposure of 

hydrophobic surfaces and induces aggregation (Zamparelli et al. 1997). 

Binding of calcium to EF3, the highest-affinity calcium-binding motif, EF2 

and EF1, activates Sorcin: Ca2+ binding at the EF3 site generates a change in 

the conformation of the loop containing Glu124, that appears to be crucial, 

since its mutation alters both calcium affinity and the capability of the protein 

to interact with targets (Mella M et al., 2003). This conformational change is 

transmitted then to EF2 via the long and rigid D helix (Ilari A et al., 2002; 

Franceschini S et al. 2008). The canonical structural coupling between EF2 

and EF1 allows information transfer to the N-terminus. These organized 

movements determine exposure to solvent of hydrophobic residues of the D-

helix (in particular Trp99 and Trp105; see Figure 4), of the EF loop and of 

the G-helix, with a consequent dramatic decrease of solubility, thus allowing 

Sorcin to translocate from cytosol to membranes, and to bind and regulate a 

series of target proteins (Franceschini S et al., 2008; Mella M et al., 2003; 

Colotti G et al., 2006). 

It is conceivable that information of Ca2+ binding to EF3 is transferred to the 

rest of the molecule by taking advantage of the specific hydrogen-bonding 

interactions established by the EF3 Ca2+ binding loop and of the long D helix 

that connects EF3 to EF2, and in particular by Phe112, located at the end of 

the D-helix (see Figure 4), whose natural mutant (F112L) disrupts the 
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hydrogen bonding network provoking alteration in EF3 and EF1 hands 

(Franceschini S et al., 2008). 

Importantly, the long D helix contains the two tryptophan residues of the 

protein. Trp99 is close to the EF2 Ca2+-binding loop (4 Å), whereas Trp105 is 

close to EF3 (7 Å), one and one-half helical turns apart from Trp99. The side 

chain of Trp99 lies on the outer surface of the SCBD, in contact with residues 

that join N-terminal and C-terminal domains, whereas the Trp105 side chain 

points toward the core of the SCBD, where it interacts primarily with 

residues of the D and G helices (see Figure 4). The different localization of 

the two tryptophan residues within the D helix and the different type of 

interactions they establish suggest that their substitution may affect 

differently the functional coupling of EF3 and EF2 and the interaction with 

target proteins. In particular, Trp105 is involved in the network of 

hydrophobic and hydrogen bonding interactions thus expecting to render this 

residue of highly important for the transmission of the Ca2+-dependent 

conformational change. This was confirmed with Trp105Gly mutagenesis 

experiments, whereas mutation of solvent-facing Trp99 has little effect. In 

both cases, Ca2+ affinity is substantially unaltered in the two mutants with 

respect to the wild-type protein (Colotti et al., 2006). 

Further details of Sorcin structure for the prediction of its mechanism of 

activation and the modulation of its activity were obtained by Ilari et al. in 

2002, with the resolution of the crystal structure of apo-SCBD. The study 

provided insights into the phosphorylation, dimerization and tetramerization 

processes specific to Sorcin and confirms the general characteristics of the 

PEF family. The association of the EF5 hands through the G and H helices of 

two monomers forms a four-helix bundle, while the loops between them give 

rise to an antiparallel E-sheet. The interface thus created buries about 20% of 
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the surface of each monomer and the dimer interface is stabilized primarily 

by hydrophobic interactions between side-chains, which include three 

phenylalanine residues of both subunits (Phe186, Phe191, Phe173). 

 

Sorcin Localization 
Sorcin is a globular cytosolic protein and, as mentioned before, can 

dynamically localize to membranes upon calcium binding. From databases 

annotated information (MOPED, PaxDb) it is known that Sorcin is one of the 

most expressed calcium-binding proteins, and is ubiquitously expressed in 

human tissues, with particularly high expression levels in those tissue that 

require calcium for their working principles; as brain, heart, bone, kidney etc. 

Furthermore, Sorcin is overexpressed in several tumors, especially those who 

resist to chemotherapy (see below). 

Speaking of its dynamic localization, it was reported by Lalioti VS and 

collaborators in 2014 that Sorcin changes its localization throughout the 

mitosis and links calcium signaling to vesicle trafficking in cells. In detail, 

during the interphase Sorcin localizes in the nucleus, in the cytosol, in the 

plasma membranes, at the endoplasmic reticulum (ER) and in ER-derived 

vesicles localized along the microtubules, whereas during mitosis, it 

concentrates in the cleavage furrow during late telophase, and at the midbody 

before cytokinesis (Lalioti VS et al., 2014). These ER-derived vesicles also 

contain RyRs, SERCA, calreticulin and Rab10. In addition, as mentioned, an 

18 kDa Sorcin variant has been found to be localized at the mitochondrion, 

probably exerting anti-apoptotic function (Landriscina M et al., 2010; 

Maddalena F et al., 2013). 
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In the cytosol Sorcin is engaged as a calcium sensor, with the role of keeping 

the [Ca2+]i in the range of 10-100nM cooperating with pumps, channels and 

other proteins involved in calcium buffering. 

Sorcin takes part to the regulation of calcium homeostasis in different 

fashions, since it binds the ion itself at micromolar range (Mella M et al., 

2003; Zamparelli C et al., 2000), and upon calcium binding it can bind 

calcium channels and pumps, regulating them. Indeed Sorcin is able to 

interact with RyR and SERCA, located in the ER, and with L-type calcium 

channel and Na+–Ca2+ exchangers (NCX), located in the plasma membrane, 

regulating them (Meyers MB et al., 1995; Lokuta AJ et al., 1997; Seidler T et 

al.,2003; Matsumoto T et al.,2005, Zamparelli C et al., 2010). In particular, 

Sorcin increases calcium accumulation in the ER by activating SERCA and 

by inhibiting RyR (see also below) (Figure 5), increases dimensions and 

calcium load of ER-derived vesicles, and is also able to increase 

mitochondrial calcium concentration (Lalioti VS et al., 2014; Suarez J et al., 

2013). 
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Figure 5: Schematic representation of Sorcin [Ca2+]i regulation. When Sorcin is upregulated it can 
activate SERCA pumps and inhibit RYRs increasing calcium concentration in the ER lumen; while if 
Sorcin is silenced, Ca2+ storage in the ER lumen is decreased (Colotti et al.,2014). 
 

Therefore high Sorcin expression increases ER calcium concentration, in this 

way it can prevent ER stress and the unfolded protein response, and increases 

escape from apoptosis (Lalioti VS et al., 2014; Maddalena F et al., 2013, 

Maddalena F et al., 2011). On the contrary, Sorcin silencing activates 

apoptotic proteases as caspase-3, caspase-12 and GRP78/BiP (Maddalena F 

et al., 2011), results in severe defects in mitosis and cytokinesis, blocks cell 

cycle progression in mitosis, increases the number of rounded polynucleated 

cells and induces apoptosis and cell death (Lalioti VS et al., 2014). 

As a multifaceted protein it can also interact with serine-threonine kinases, 

which participate in the regulation of mitosis progression (Lalioti VS et al., 

2014). Sorcin contains several potential phosphorylation sites and  
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phosphorylation contributes to regulate Sorcin activity. Sorcin can be 

phosphorylated by Polo-like kinase 1 (Plk1), induces Plk1  

autophosphorylation, and contributes to Plk1 regulation (Lalioti VS et al., 

2014). Also cAMP-dependent protein kinase (PKA) and calcium-calmodulin 

dependent kinase II (CaMKII) phosphorylate Sorcin (Ilari A et al., 2002; 

Anthony DF et al., 2007), altering its binding to RyRs and SERCA, and 

therefore calcium homeostasis. 

Sorcin has been found in other vesicles than the ER-dependent ones, as such: 

nanovesicles containing Annexin A7, released in a calcium-dependent 

fashion from the erythrocytes (Salzer U et al., 2002), and in exosomes from 

different sources, such as B-cell exosomes (Buschow SI et al., 2010), 

mesenchimal stem cell exosomes (Lai RC et al., 2011), exosomes from 

human urine (Pisitkun T et al., 2004; Gonzales PA et al., 2004).  

Furthermore, it has been reported that Sorcin binds and sequesters the 

carbohydrate-responsive element binding protein (ChREBP) in the cytosol at 

low glucose concentration, by interacting with the N-terminal glucose-

sensing domain of ChREBP (Noordeen NA et al., 2012). Following glucose 

stimulation and calcium influx, Sorcin releases ChREBP, which becomes 

free to translocate to the nucleus. 

 

1.2.1 Sorcin role in cardiomyocytes 
Sorcin role was first dissected in tissues or cells with calcium-dependent 

functions, as heart and cardiomyocytes. 

Given the importance of Ca2+ in the excitation-contraction-relaxation 

processes, it has been crucial to characterize how calcium was mobilized 

between cytoplasm, calcium intra-cellular storages and extra-cellular space 

during the process. Indeed in the cardiomyocyte the alteration of calcium 
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homeostasis is the primary cause of arrhythmia and contractile dysfunctions 

in physio-pathological conditions. 

Sorcin acts as a regulator of the contraction-relaxation process in 

cardiomyocytes, due to its calcium sensing capability and the ability to bind 

calcium channels, exchanger and pumps in a calcium-dependent manner, and 

to regulate them.  

Heart contraction is a complex and fast process. Located in the wall of the 

right atrium is a group of specialized cells, called the sinoatrial node. These 

cells, unlike most other cells within the heart, can spontaneously produce 

action potentials. These action potentials travel along the cell membrane 

(sarcolemma), as impulses, passing from one cell to the next through 

channels, in structures known as gap junctions. The speed of conduction of 

the action potential varies at different parts of the heart, and once the atria 

have contracted, there is a slight delay, which enables the ventricles to fill 

with blood before they contract. Certain regions of the sarcolemma penetrate 

deep into the cell. These are known as transverse-tubules (T-tubules), also 

found in skeletal muscle cells, and allow for the action potential to travel into 

the centre of the cell. Upon the action potential triggers the wave of 

depolarization reaches a cardiomyocyte, voltage-dependent Na+ channels 

open, which results in a rapid cell depolarization. During depolarization, 

calcium enters the cell via voltage-dependent Ca2+channels (VOCC, mainly 

L-type channels). L-Type Ca2+ channels are located primarily in the T-tubule, 

in the dyadic space, juxtaposed to sarcoplasmic reticulum (SR) calcium 

release channels, the ryanodine receptors (RyRs). Calcium entry via VOCC 

and locally increases Ca2+ concentration near RyRs, triggering Ca2+release 

from the SR, a specialized calcium store similar to ER. This calcium-

activated process is called calcium-induced calcium release (CICR). The Ca2+ 
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flux further raises the free [Ca2+]i, allowing the binding of the ion  to 

troponin C thus triggering the contraction. 

To stop the stimulus and let the relaxation occur, cytosolic [Ca2+] has to 

decrease, allowing calcium dissociation from the myofilaments. Thus, RyR 

has to be closed, and calcium has to be transported out of the cytosol, mainly 

via the SERCA pumps, which brings Ca2+ back into the SR, the sarcolemmal 

Na+/Ca2+exchanger (NCX) and mitochondrial Ca2+ uniporter (MCU) (Bers 

DM et al., 2006) (Figure 6). 

 
Figure 6: Schematic representation of excitation-contraction-relaxation coupling in 
cardiomyocytes. The red arrows represent the calcium fluxes activated upon contraction stimulus and 
depolarization. The green arrows represent the calcium fluxes activated once the contraction occurs on 
myofilaments and intracellular calcium concentration has to be restored. The panel in the figure puts 
together the wave of the action potential during the depolarization, followed, in a time-scale of 200 
msec, by the increase of [Ca2+]I and subsequently the contraction event. 
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Sorcin plays a crucial role in the regulation of cardiac contraction, being able 

to interact with all the main calcium channels-exchangers, above mentioned, 

and to regulate them. Sorcin modulates the L-type VOCC, by interacting with 

its alpha-1C subunit with its SCBD, slowing Ca2+-dependent inactivation and 

stimulating voltage-dependent inactivation of the calcium currents of the 

channel (Fowler MR et al., 2008 2009). 

Moreover, Sorcin is able to interact with RyR2, the cardiac isoform, and to 

strongly inhibit it, in a calcium-dependent manner (Lokuta AJ et al., 1997; 

Farrell EF et al., 2003). In the cardiomyocyte, such RyR inhibition takes 

place when the local calcium concentration at the surface of SR is increased 

by CICR from the calcium store, bringing a decreased localized calcium 

release events and reducing global calcium transients. Sorcin reduces calcium 

flow from RyR2 by decreasing the mean open time and the frequency of 

open event (Franceschini S et al., 2008; Lokuta AJ et al., 1997; Farrell EF et 

al., 2003). 

On the other hand Sorcin also interacts with SERCA, activating it 

(Matsumoto T et al. 2005). All these interactions make Sorcin able to 

increase calcium intake of SR and to determine negative regulation of its 

release, in a dose-dependent and calcium-dependent fashion. Sorcin also 

activates NCX through a calcium-dependent interaction of the respective C-

terminal domains. It has been reported that the overexpression of Sorcin in 

cardiomyocytes has also been associated with increased activity of the Na+–

Ca2+ exchanger (Seidler T et al., 2003; Zamparelli C et al., 2010).  

Overall, Sorcin regulates the excitation-contraction-relaxation process in the 

heart, by terminating the calcium-induced calcium release by the SR, and 

favoring relaxation, by decreasing the cytosolic calcium concentration, with 

at least three different modalities:  
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- it inhibits calcium release from the SR by inhibiting RyR2,  

- it increases calcium uptake to SR by activating SERCA2a,  

- it enables calcium extrusion from the sarcolemma by increasing NCX 

activity. 

As mentioned in the previous section phosphorylation by PKA alters 

Ca2+sensitivity of Sorcin and calcium-dependent interaction with RyR2. 

Moreover, in the failing heart, Sorcin is found hyper-phosphorylated and 

translocation to the SR membrane is increased, suggesting a preservation of 

the SR Ca2+content together with an improved cardiac relaxation (Lokuta AJ 

et al., 1997; Matsumoto T et al., 2005; Maddalena F et al., 2011). 

The natural mutant Phe112Leu in Sorcin EF3-hand was associated with 

hypertrophic cardiomyopathy and hypertension. This mutation, as described 

in the previous section, decreases the ability of Sorcin to interact with its 

cardiac targets and to negatively regulate calcium storages release, resulting 

in complex cardiac alterations (Franceschini S et al., 2008; Collis LP et al., 

2007). 

Sorcin overexpression in mice is associated with an increase in cardiac 

contractility of the normal heart and with a dramatic rescue of the abnormal 

contractile function of the diabetic heart; this might be explained with the 

improved calcium transient found in cardiomyocytes upon Sorcin 

overexpression (Frank KF et al., 2005; Suarez J et al., 2004) 

 

1.2.2 Sorcin role in the brain 
The expression level of Sorcin in the brain is quite high, i.e. about 5-10 times 

higher than that in the heart. Particularly Sorcin is well expressed in the 

amygdala, in the prefrontal cortex, in the hypothalamus as well as in many 
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brain cancers (GeneAtlas U133A, gcrma); Sorcin was found as one of the 

most expressed calcium-binding proteins in these tissues. 

Sorcin is considered a histological marker for malignant glioma (Yokota T et 

al., 2006), and is one of the most expressed proteins in anaplastic 

astrocytoma, oligodendroglioma and glioblastoma (French PJ et al., 2005; 

Shai R et al., 2003; Sun L et al., 2006). Moreover Sorcin has been found as 

one of the main markers of poor outcome in embryonal tumors of central 

nervous system (Pomeroy SL et al., 2002). 

Besides, dysfunction of calcium-mediated signaling has been implicated in 

many neurodegenerative diseases including Alzheimer's disease (AD) and 

Parkinson disease (PD), where it was found that perturbed ER calcium 

homeostasis, ER stress, and the consequent accumulation of unfolded protein, 

are involved in the accumulation of misfolded proteins, etiology of these 

pathologies. As mentioned, Sorcin is able to interact directly with RyR and 

SERCA (inhibiting RyR and activating SERCA), thus maintaining calcium 

load in ER; this feature could possibly be linked to the ability of Sorcin to 

decrease the unfolded protein response in the brain. Several studies reported 

alteration in regulation and function of RyR in human AD-affected brains, in 

brains of transgenic AD mice models and in cells expressing familiar AD-

linked mutation to E amyloid precursor protein (EAPP) and presenilins (Del 

Prete D et al., 2014), suggesting a possible implication of Sorcin. Moreover 

Sorcin directly interacts in a calcium-dependent fashion with alpha-synuclein 

(AS) and presenilin 2 (PS2), two proteins involved in the pathogenesis of PD 

and AD, respectively, in vitro, in cultured cells and in human brain (Pack-

Chung E et al., 2000; Woods WS et al., 2007). Sorcin binds to the C-terminal 

region of PS2, a protein whose interaction with RyR upon calcium binding 



28 
 

and regulation of calcium homeostasis in the cells has been reported (Takeda 

T et al., 2005). 

In addition, Sorcin is overexpressed in a PD cell model induced by 1-methyl-

4-phenylpyridinium ion (MPP+) in SH-SY5Y cells (Xie H et al., 2011), and is 

one of the most differentially expressed proteins in PD vs. normal human 

substantia nigra (Werner CJ et al., 2008). Sorcin interacts with the N-methyl-

D-aspartate receptor 1 in caudate-putamen nucleus (Gracy KN ey al., 1999). 

Further, it interacts with annexins A7 and A11, which affect functions of 

primary astrocytes (Clemen CS et al., 2003).  

 

1.2.3 Sorcin role in cancer and MultiDrug Resistance (MDR) 
Sorcin was firstly isolated by Meyers and Biedler in 1981 as a soluble, low 

molecular weight protein in hamster lung cancer cell line resistant to 

vincristine, and this feature was used to give Sorcin the name now used 

(Meyer MB and Biedler JL 1981). 

As aforementioned, Sorcin exerts several biological functions, as binding and 

regulating Ca2+ pumps and channels playing a key role in calcium sensing, 

being phosphorylated by several kinases involved in cell cycle progression or 

calcium homeostasis, regulating calcium load in storage organelles and 

vesicle trafficking. Beside all these calcium-related processes, it has been 

largely reported throughout the years that Sorcin is overexpressed in many 

cancer types, especially the ones with a MultiDrug Resistance (MDR) 

phenotype (see below). 

MDR is the major cause of chemotherapy failure and this phenotype in cells 

can arise in different fashions, that will be further dissected in the following 

section. 
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One of these features is the increased expression of energy-dependent ABC 

(ATP binding cassette) transporters, that results in an increased extrusion of 

the drugs outside the cell. 

Sorcin (SRI) gene, located in chromosome 7, shares the same amplicon with 

other genes, some of them involved in resistance to chemotherapeutics as 

ABC transporters, as such: ABCB4 and ABCB1 (Mdr1, or P-glycoprotein P), 

both in humans and rodent genomes. 

These energy-dependent pumps have a broad substrate specificity and they 

are physiologically engaged in the extrusion of xenobiotics out of the cell, 

and they are reported to be overexpressed in cancer cells that develop 

resistance towards different chemotherapeutic drugs. 

Sorcin was identified as resistance–related because its gene was co-amplified 

with P-glycoproteins in cancer cells with MDR phenotype (Van der Bliek 

AM et al., 1986). For years Sorcin overexpression was thought to be an 

accidental by-product of this co-amplification process (Van der Bliek AM et 

al., 1988). Sorcin is found overexpressed in many human tumors, as: 

lymphoma, leukemia, gastric cancer, lung cancer, adenocarcinoma, breast 

cancer, nasopharyngeal cancer and ovarian cancer, particularly in the MDR 

cancers (Deng L et al., 2010; Padar S et al., 2004; Qi J et al., 2006; Qu Y et 

al., 2010; Tan Y et al., 2003; Yamagishi N et al., 2014; Yang YX et al., 2014; 

Zhou Y et al., 2006). 

Lately many studies have dissected the role of Sorcin in MDR cancer types, 

indicating its role as an oncoprotein. For example, in K562/A02 leukemia 

doxorubicin-induced resistant cell lines Sorcin was found consistently up-

regulated compared to the parental cell line, and the overexpression in 

resistant line conferred MDR phenotype. Furthermore leukemia cell lines 

showed an up-regulation in anti-apoptotic and survival pathways and a 
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decrease in the pro-apoptotic ones (Qi J et al., 2006). The level of Sorcin 

expression in leukemia patients generally correlates with patients low-

response to chemotherapies and poor prognosis. 

Moreover Sorcin overexpression by gene transfection resulted in increased 

drug resistance to a variety of chemotherapeutic agents, including 

doxorubicin, etoposide, homoharringtonine and vincristine in K562 cells; and 

determined drug resistance to vincristine, adriamycin, taxol and 5-

fluorouracil in SGC7901 cells, ovarian and breast cancer; confirming the 

ability to generate additional drug resistance. On the contrary the inhibition 

of Sorcin expression by Sorcin-targeting RNA interference techniques led to 

reversal of drug resistance in the following cell lines: MDR K562/A02 and 

Sorcin-transfected K562; MCF-7/A02; HeLa; colorectal cancer; and 

CNE2/DDPls (Zhou Y et al., 2006; Hamada H et al., 1988; He Q et al., 2011; 

Hu Y et al.; 2013; Kawakami M et al., 2007; Liu X et al., 2014; Parekh HK et 

al., 2002).  

Sorcin silencing inhibits the epithelial-to-mesenchymal transition in the 

breast cancer MDA-MB-213 cell line, possibly via E-cadherin and VEGF 

expression, and reduces breast cancer metastasis, while Sorcin 

overexpression increases migration and invasion in vitro (Hu Y et al., 2014). 

Even though this findings demonstrate that Sorcin is clearly a marker of 

MDR and may represent a therapeutic target for reversing tumor multidrug 

resistance, conflicting results are still present in literature on the effect of 

Sorcin overexpression and silencing on MDR1 expression and activity (see 

Lee WP et al., 1996; Wang SL et al., 1995; Xu P et al., 2015; Yamagishi N et 

al., 2014) and many efforts still have to be done to understand the molecular 

mechanism that make Sorcin a crucial actor in cancer cells with MDR 

phenotype. 
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Several groups are currently studying Sorcin role in the development of 

MDR in cancer cells, disclosing intriguing findings.  

Yamagishi and his collaborators found that Sorcin expression correlates with 

ABCB1 up-regulation; infact Sorcin induces ABCB1 expression through 

cAMP response element (CRE) situated within -716 and -709 basepairs of 

mdr1 gene. Additionally they found that Sorcin up-regulation induces 

ABCB1 expression through the activation of CREB (cAMP response 

element-binding protein) pathway increasing the phosphorylation of CREB1 

and its binding to the CRE sequence on mdr1 promoter (Yamagishi N et al., 

2014). 

A shorter isoform (18KDa) of Sorcin, identified as mitochondrial, is the 

object of the quality control operated by ER-associated TRAP1. This protein 

is up-regulated in several human tumors and can modulate apoptosis; indeed 

transfection experiments of TRAP1 deletion mutant in TRAP1-silenced cells 

increases the expression of mitochondrial Sorcin and protects from apoptosis 

upon treatment with ER stress agents and paclitaxel (Maddalena F et al., 

2013). 

Sorcin thus participates in the prevention of ER stress and of the unfolded 

protein response, and increases escape from apoptosis (Lalioti VS et al., 

2014; Maddalena F et al., 2013; Maddalena F et al., 2011), shifting the 

equilibrium between cell life and cell death towards proliferation in MDR 

cancer cells overexpressing Sorcin. 

 
1.3 MultiDrug Resistance 
MultiDrug Resistance (MDR) is the ability of cells to develop resistance to 

several pharmaceutical treatments. This process was firstly discovered in 

bacteria, where the strategy is exploited to resist to antibiotics. Even though 
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some mechanisms of drug-resistance are disease-specific, cancer cells and 

bacteria share drug efflux among these mechanisms, suggesting its highly 

evolutionary conservation (Housman G et al., 2014). 

MDR appears to be the major cause of chemotherapy failure and subsequent 

cancer relapse after surgical removal. This happen because there are two 

types of MDR development (Longley DB and Johnston PG 2005; Holohan C 

et al., 2013):  

- Intrinsic resistance (before receiving chemotherapy), due to pre-

existing resistance-mediating factors in the bulk of tumor cells, that 

impede the effectiveness of the drugs; 

- Acquired resistance (after receiving chemotherapy), caused by 

mutations and/or increase of adaptative response, ranging from 

increasing expression therapeutic targets to activation of alternative 

pathways. 

An additional feature to this scenario is cell heterogeneity, inherent in 

tumors, that permits the co-existence of different cell populations at the same 

time (including the above mentioned) and is involved in the development of 

drug resistance.  

Recent studies report that inside cancer heterogeneous population, some cells 

with stem cell properties are drug-resistant, but also a small fraction of adult 

cells might have this ability. Since the treatment affects only the sensitive 

population, the drug-resistant cell pools survive and possibly spread to other 

organs, making the treatment ineffective (Housman G et al., 2014). 

Focusing our attention on cancer cells, there are several mechanisms by 

which cells can develop MDR (Figure 7): 



33 
 

 
Figure 7: Summary of mechanisms activated in the development of Drug resistance. These 
mechanisms can promote direct or indirect MDR and can act independently or together, through 
various signal transduction pathways (Housman G et al., 2014).  
 

In details,  

(i) Drug inactivation: in some cases the drug undergoes a process of 

activation in vivo, that includes the collaboration of different proteins to 

modify, partially degrade, and/or complex the drug to other molecules or 

proteins. Many drugs need this activation to be effective on tumors, thus one 

of the resistance-strategies engaged is the decrease or block of drug activation 

mechanisms. 

(ii) Drug target alteration: the effectiveness of the therapy depends on its 

target as well; for this reason some tumors develop mechanisms of alteration 

of the drug targets, as mutation or changes in their expression levels. 

(iii) DNA damage repair: many drugs can act directly or indirectly on DNA 

stability, so the DNA damage response (DDR) can reverse the damage 

induced by the therapy. Indeed the effectiveness of a cytotoxic DNA-

damaging drug strictly depends on the inefficacy of DDR. To this end a 

combined therapeutic strategy of inhibition of damage response effectors 

together with the DNA-damaging drugs can increase the sensitivity and thus 

the efficacy of the therapy. 



34 
 

(iv) Cell death inhibition: in many cancer types anti-apoptotic proteins (BCL-

2 proteins, Akt etc.) are overexpressed and their downstream transcription 

modulators (STAT, NFNB) are highly active, leading to the cell death escape. 

However, these can represent good targets to revert drug resistance. 

Autophagy can contribute to cell death as well; it is exerted by 

phagolysosomal death at acidic pH. Some drugs, as chloroquines, can raise 

the pH in the lysosome, preventing this process to occur and inactivating 

digestive enzymes in the lysosome. 

(v) Epitelial-mesenchymal transition (EMT) and metastasis: the EMT is a 

complex mechanism by which tumor cells can develop metastasis. A change 

in cancer cells, stromal cells and the microenvironment occur, where the 

expression pattern of cell adhesion receptors, integrins and cadherins 

changes. The attention on this aspect in the development of drug resistance is 

increasing (Shang Y et al., 2013; Singh A et al., 2010). 

Some studies focus the attention on cancer stem cells, i.e. the cell population 

that initiate the metastatic event, that survive the surgical removal or 

chemotherapy (Chaffer C et al., 2011; Chaffer C et al., 2011; Sarkar S et al., 

2013; Byler S et al., 2014; Byler S and Sarkar S 2014), and on the signaling 

process activated during differentiation, essential for EMT to occur (Bates 

RC et al., 2015); both mechanisms can lead to MDR. 

Stromal cells may play an important role as well. Recent findings on drug 

resistance in cancer-fibroblast co-cultured cells indicates their involvement in 

MDR and may explain the failure of the therapy in animal model despite 

cultured tumor cells (Staussman R et al., 2012). 



35 
 

(vi) Epigenetics; the role of epigenetics in carcinogenesis and drug-resistance 

has been investigated recently. Epigenetic modifications occur on DNA 

binding proteins, the histones, that govern the degree of DNA coiling to 

facilitate or inhibit DNA transcription. The modifications consist in the 

addition of certain chemical groups on specific aminoacidic residues of 

histones; these are mainly acetyl and methyl groups, that usually correspond 

to an activation and repression of transcription, respectively. 

Recent findings showed that epigenetic modifications can influence 

resistance development. As reported by Kantharidis and collaborators, the 

demethylation of MDR1 promoter is strongly correlated to increase of drug 

resistance in cancer cells (Kantharidis P et al., 1997). It has been proposed 

that demethylation associated to the re-expression of tumor suppressor genes 

make resistant cancer cells sensitive to cytotoxic agents (Sarkar S et al., 

2013; Byler S et al., 2014; Byler S and Sarkar S 2014; Sarkar S et al., 2013). 

To this end, epigenetics can be a powerful strategy to develop new treatments 

because the modification are reversible, the methylation of MDR1 promoter 

render it a good therapeutic target, cancer cells can be sensitized by the 

combination of methylation agents and cytotoxic drugs, and recent clinical 

studies demonstrated that the pre-treatment of cancer cells with epigenetic 

drugs reduces cancer relapse and make the treatment of resistance more 

effective (Juergens R et al., 2011).  

(vii) Drug efflux: drug efflux represents the most studied mechanism of 

resistance (also shared with bacteria), consisting in the ability of enhance the 

extrusion of the drug outside the cell thanks to the up-regulation of specific 
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transporters. These are ATP binding cassette (ABC) transporters involved in 

the physiological extrusion of xenobiotics from the cells (see below). 

Deregulation of signaling pathways and kinases can act on the expression of 

these proteins as well, leading to an overexpression and, consequently, to the 

development of the MDR phenotype. 

As presented, MDR appears to be a mosaic of features that can occur together 

or independently, often rendering the therapeutic strategies ineffective. The 

deep understanding of the causes behind this mechanism is fundamental to 

overcome this problem; for this reason, combined therapy and molecularly-

targeted therapies represent the future perspectives of this challenge. 

1.3.1 MDR1 and its amplicon 

MDR1, also known as P-gp (permeability glycoprotein) and ABCB1 (ATP 

binding cassette member B1), belongs to a family of large membrane proteins 

that transport against steep concentration gradient neutral amphipathic 

compounds at the cost of ATP hydrolysis. 

The human genome contains 48 ABC genes, where 16 of these have a known 

function and 14 are associated to a specific disease; physiologically, these 

proteins transport lipids, bile salts, toxic compounds, and peptides (Borst P 

and Elferink RO 2002). 

Among all of these members, only three have been studied extensively due to 

their role in MDR: MDR1, MDR-associated protein 1 (MRP1 or ABCC1) 

and breast cancer resistance protein (BCRP or ABCG2) (Gottesman MM et 

al., 2002). The three ABC transporters have partially overlapping substrate 

specificities, and promote the extrusion of hydrophobic compounds from the 
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cell, including major cancer therapeutic drugs (taxanes, topoisomerases 

inhibitors and antimetabolites).  

Overexpression of MDR1 is associated with chemotherapy failure in many 

cancer types (Holohan C et al., 2013). MDR1 is expressed in most of the 

tissues at low levels but found at higher levels on the surface of epithelial 

cells belonging to tissues with an excretory function as, colon, small 

intestine, pancreatic ductules, bile ductules and kidney proximal tubules 

(Ambudkar SV et al., 1999; Choi CH 2005), as well as blood-brain barrier, 

testis-blood barrier and placenta (Borst P and Schinkel AH, 2013) (Figure 8). 

Furthermore, some studies reported that the normal expression of MDR1 in 

tissues with excretory function as kidney, liver, intestine is increased whether 

the tissue become cancerous (Housman G et al., 2014).  It has been reported 

that lung cancer cells treated with doxorubicin increased MDR1 expression, 

while the same treatment in normal cells does not have the same effect in 

MDR1 protein level, suggesting that there is a concurrence of acquired and 

intrinsic mechanism of MDR1-overexpression (Hilgendorf C et al., 2007). 

Conflicting opinions exist on MDR1 exclusive contribution to drug efflux in 

MDR. Although its role in pharmacokinetics is uncontested, recent studies 

highlighted that its role in drug resistance of human tumors has turned out to 

be smaller than expected; whether a small amount of MDR1 can completely 

protect mouse tumors from chemotherapy drugs, it seems effective on human 

tumors in a smaller extent (Borst P, 2012). 
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Figure 8: MDR1 functional expression throughout the body. The blue lines indicate the location of 
MDR1, the red arrows indicate the direction of MDR1-mediated transport, green arrows indicate net 
body excretion of MDR1 substrates. MDR1 protects the tissue from its specific substrate in the blood-
brain barrier, testis-blood barrier and placenta; mediates substrate excretion in intestine, and mediates 
hepatobiliary and renal substrate excretion; while it mediates MDR in tumor cells (Borst P and 
Schinkel AH, 2013). 
 

As mentioned in the previous section, MDR drug efflux strategy is shared 

with bacteria as well, suggesting a highly conserved evolutionary 

mechanism, confirmed by the fact that ABC transporters are present in all 

existing phyla (Housman G et al., 2014). Although proteins structures vary 

inside the family, they overall share the common presence of two distinct 

domains: the highly conserved nucleotide binding domain and the variable 

transmembrane domain (Chang G et al., 2001). 
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Hence the mechanism of activation and transport is basically the same; upon 

substrate binding on the transmembrane portion, ATP hydrolysis is activated 

on the other domain. The hydrolysis then provokes a change in conformation 

that drives the extrusion of the substrate outside the cell (Sauna Z et al., 

2001). 

The role of MDR1 in drug resistance is also intriguing because of its co-

amplification with Sorcin (see 1.2.3 section, Van der Bliek AM et al., 1986), 

since the genes are located close in 7q 21 chromosome portion (Figure 9). 

 

 

 
Figure 9: ABCB1 and SRI amplicon. ABCB1 gene sequence resides on chromosome 7, region 
7q21.12 as Sorcin (SRI) gene. Highlighted genes are over-expressed in cells with MDR phenotype, red 
arrow (ABCB1) or red names (SRI, ABCB4, DBF4) (Source: NCBI gene). 
 

It is possible to notice that the amplicon contains genes as ABCB4, ADAM22, 

SLC25A40, TP53TG1 and DBF4, involved in cancer or other pathologies, 

and reported to have a role also in MDR (Rosenthal EA et al., 2013; Kwon 

NS et al., 2017; Bonte D et al., 2008; Varrin AE et al. 2005; Diaz-Lagarez et 

al. 2016; Chao et al. 1991; Van der Bliek et al. 1987; Januchowski et al. 

2013; Nemcova-Furstova et al. 2016). 

What is known about MDR1 gene is that it can undergo chromosomal 

rearrangements that can explain its abnormal regulation in cancer and drug 

resistant cells (Duesberg P et al., 2007) and the up-regulation of Sorcin as 

well. Nevertheless the molecular reasons that explain those over-expressions 
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is still under investigation and many questions still have to be tackled. For 

example, do the rearrangements affect the expression of MDR1 and Sorcin 

only? Is there the involvement or the contribution of other genes of the locus? 

The answer to these questions may shed light on MDR complex phenotype 

development. 

 

1.4 Function of doxorubicin and retinoic acid in chemotherapy 
Doxorubicin and retinoic acid (Figure 10) are chemotherapeutic drugs largely 

utilized in the treatment of mainly solid tumors and leukemia, respectively. 
 

 
Figure 10: Structures of Retinoic Acid on the left side and Doxorubicin on the right side. 

 

Doxorubicin: also known as Adriamycin, it is generally used for the 

treatment of breast and bladder cancers, sarcoma and lymphoma. 

Doxorubicin is the 14-hydroxylated version of daunomycin, which is quite 

abundant in nature as a product of several wild-type species of Streptomyces; 

one non wild-type variant (Streptomyces peucetius subspecies cesius, ATCC 

27952) is known to produce the most commonly used doxorubicin 

(Lomovskaya N et al., 1999). 
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Its mechanism of action involves DNA intercalation (Tacar O et al., 2013; 

Fornari FA et al., 1994) and inhibition of DNA and other macromolecules 

biosynthesis (Momparler RL et al., 1976). DNA intercalation, through its 

planar aromatic rings, causes the blockage of topoisomerase II, the enzyme 

involved in DNA coils relaxation. Indeed the planar aromatic chromophore 

intercalates between two base pair of DNA, while the six-membered 

daunosamine sugar interacts with flanking base pairs, immediately after the 

intercalation site, in the minor groove (Frederick CA et al., 1990; Pigram WJ 

et al., 1972). Furthermore, doxorubicin stabilizes the topoisomerase II 

complex after it has broken the double helix; this complex prevents the 

release of the double helix of DNA, thus interrupting the replication process 

(Tacar O et al., 2013). Thanks to the intercalation strategy, doxorubicin can 

also induce histone loss from transcriptionally active chromatin (Pang B et 

al., 2013; Pang B et al., 2015), resulting in transcription deregulation. 

Among the other functions, it can increase quinone-type free radicals 

production, that can contribute to its cytotoxic effect (Rossi S 2013). 

Overall, DNA damage response, transcription and epigenetic processes are 

affected in doxorubicin-exposed cells (Pang B et al., 2013). 

 

Retinoic acid (RA): a metabolite of vitamin A or retinol, it is the mediator of 

vitamin A function during development and differentiation. Retinoic acid is 

required by chordata, from fish to humans, for early embryonic development 

of the posterior portion of the embryo along the anterior-posterior axis 

(Duester G, 2008); during this process it acts through the Hox genes, which 

control the ultimately development of embryo anterior-posterior axis 

(Holland LZ, 2007).  
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Despite its well-known role as a teratogen agent, RA has been also employed 

successfully as a chemotherapeutic agent in the treatment of Acute 

Promyelocitic Leukemia (APL) and Acute Myeloid Leukemia (AML) or as a 

co-adjuvant of cytotoxic agents, as arsenic, in solid tumors (Degos L and 

Wang ZY, 2001; Su M et al., 2015; Le-Min Lin et al., 2005).  

APL is caused by a chromosome translocation involving the gene coding for 

RARD�fused, in most of the cases, with the promyelocytic leukemia gene 

(PML) resulting in an abnormal control of myeloid differentiation and a 

subsequent accumulation of granulocytes precursors, the promyelocytes. The 

treatment with RA makes these cells responsive again to the differentiation 

stimulus, such that good prognosis has drastically improved to 77% (Coombs 

CC et al., 2015). 

The AML scenario is more complex though, because different causes can 

cooperate for the etiopathology; generally RA can be used for chemotherapy 

because of its ability to induce differentiation. Its mechanism of action 

consists in its binding to the nuclear heterodimeric receptor RAR/RXR that, 

upon retinoic acid binding, changes its conformation driving the transcription 

activation or repression of specific genes on retinoic acid response elements 

(RARE). Retinoic acid can mediate the transcription of several gene sets, 

generally involved in differentiation, of various cell type; so the regulated 

target genes depends strictly on the cellular target (Venkatesh K et al., 2013). 

 

1.5 Proteomic Peptide Phage Display (ProP-PD): a novel technique to 
dissect binding motifs and protein-protein interactions (PPIs) 

Proteomic Peptide-Phage Display (ProP-PD) is a novel high-throughput 

method used to characterize protein-protein interactions (PPIs; Davey NE et 
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al., 2017). In ProP-PD, peptides derived from the human proteome are 

displayed on the major coat protein pVIII of the M13 phage.  M13 is a 

bacteriophage that contains a circular single stranded DNA (ssDNA) 

sheltered by five different coat proteins. The whole surface of M13 is covered 

by the major coat protein pVIII, expressed in ~ 2.700 copies. This strain is 

easy to handle and manipulate (Sundell GN and Ivarsson Y 2014). Moreover 

using the major coat protein a high valency display (up to 1.000 copies) is 

accomplished (Marvin DA et al., 2014).  

ProP-PD differs from combinatorial phage display because the library is 

specifically designed to display peptides of the human proteome. The power 

of this technique resides in the high versatility that peptides libraries can 

achieve, indeed they can be designed on specific protein domains (as PDZ, 

Ivarsson Y et al., 2014), intrinsically disordered regions (Davey NE et al., 

2017) of proteins or whatever region of interest. Intrinsically disordered 

regions are highly interesting because are enriched in SLiMs (Short Linear 

Motifs), 3-10 aminoacidic stretches which are generally involved in 

interactions that are crucial for cell signaling.  

The versatility of the designed peptides library can thus give crucial and 

novel information about previously unknown networks of interaction, and 

combine this information to the preferred binding motifs or residues involved 

in those interaction. 

In comparison to other methods to study PPIs, as peptide and protein array, 

yeast surface display and yeast-two-hybrids, the main advantages of ProP-PD 

are that it does not require labor-intense set up or high affinity interactions 

(as protein arrays), or have a quite low throughput (as yeast surface display), 
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or high number of false positive and negative read-outs (as peptide array and 

yeast-two-hybrids) (Blikstad C and Ivarsson Y, 2015). The main 

disadvantage of phage display has typically been the sequencing costs, but 

these days, next-generation sequencing (NGS) has conferred a reduced 

sequencing cost and a less laborious analysis.  

ProP-PD process is based on selection steps, where the phage pools 

displaying single peptides are selected each day based on their interaction 

with the bait protein, so that every selection day the pool of bound phages is 

enriched (Figure 11). 

 

Figure 11: Representation of Proteomic Peptide Phage Display, using M13 phage: Starting from 
the top-left square, a library is designed, then peptides from the library are displayed on M13 surface, 
the bound phages are eluted after washing steps and finally they are amplified and sequenced (Sundell 
GN and Ivarsson Ylva, 2014). 
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Overall, the major power of this technique resides in the libraries versatility, 

the high throughput readout together with the information on preferred motifs 

and/or residues involved in the binding between the bait protein and the 

displayed peptides. 
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2. Aim of the thesis 
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The present work aims to shed light on Sorcin activation upon calcium 

binding, to dissect the molecular role of Sorcin in the MultiDrug Resistance 

(MDR) process in cancer cell lines, together with the characterization of 

Sorcin interactome and preferred binding motifs using a cutting-edge 

technique called Proteomic-Peptide Phage display (ProP-PD). 

As mentioned in Chapter one, Sorcin is a calcium-binding penta EF-hand 

protein whose overexpression in various cancer types goes along with MDR 

phenotype and poor prognosis. This feature may be due to its simultaneous 

expression with glycoprotein-P (P-gp or MDR1), which gene is in the same 

amplicon of Sorcin and physiologically involved in the extrusion of 

xenobiotics from cells. The lack of information concerning the molecular 

relationship between Sorcin and MDR phenotype brought us to investigate 

the process in cancer cell lines. 

To tackle this question we performed the cell biology experiments with a cell 

line that expresses high level of Sorcin in order to get an MDR-like model, 

and then treated it with doxorubicin, a chemotherapeutic drug that inhibits 

cell cycle progression intercalating the DNA.  

Thus the experimental plan consisted in: 

- testing different tumor cell lines (MDA-MD231, MDA-MD468, H1299, 

HeLa, CALU, A549) for endogenous Sorcin expression; 

 - testing the survival rate of those cell lines upon doxorubicin treatment and 

comparing the readout to Sorcin expression levels in each cell line; 
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- performing direct Sorcin-silencing through a specific siRNA in the cell line 

with MDR-like phenotype (high Sorcin expression level; high survival rate 

upon treatment) and then test the drug-sensitivity rate; 

- evaluating localization of Sorcin in untreated cells and upon doxorubicin 

treatment through confocal microscopy; 

- evaluating the uptake of doxorubicin upon silencing, via confocal 

microscopy and Fluorescence-Associated Cell Sorting (FACS); 

- testing MDR1 expression level upon Sorcin silencing; 

- testing the capability of MDR1 in pumping out drugs in control cells and 

upon Sorcin silencing. 

Besides cell biology experiments, we studied the interaction of Sorcin with 

chemotherapeutic drugs such paclitaxel, vinblastine, cisplatin, retinoic acid 

and doxorubicin, through Surface Plasmon Resonance (SPR) experiments. 

Starting from this information we: 

-tested Sorcin-doxorubicin binding by spectrofluorometry, measuring 

tryptophan quenching during titration experiments with the chemotherapeutic 

drug; 

- grew crystals of Sorcin, and of Sorcin-doxorubicin complex, and performed 

experiments of soaking of Sorcin crystals with doxorubicin; 

- measured fluorescence spectra on crystals of Sorcin-doxorubicin complex; 

- solved the crystal structure of Sorcin-doxorubicin complex. 
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Furthermore, starting from Sorcin-retinoic acid binding information, 

preliminary data about on the relationship between Sorcin and retinoic acid-

dependent Acute Promyelocytic Leukemia (APL) differentiation were 

obtained. 

Moreover, we solved the crystal structures of apo and calcium-bound Sorcin, 

that enabled us to understand its activation and subsequent interaction with 

binding partners upon ion binding. To this end, we took advantage of ProP-

PD to better understand Sorcin preferred binding motifs involved in Sorcin-

protein interaction in presence of calcium. 

As described in the previous section, ProP-PD is a novel high-throughput 

technique that allows the dissection of preferred binding motifs to a bait 

protein. We used a 16-mer peptide library, displayed on M13 phage surface, 

designed on intrinsically disordered regions of human proteins containing 

SLiMs (Short Linear Motifs), about 6 aminoacids stretches generally 

involved in protein-protein interaction.  

We thus performed two Pro-PPD selections, in presence and absence of 

calcium; we then analyzed the resulting dataset with bioinformatics tools and 

with in vitro binding experiments. 

As a list of potential peptide binders was obtained, we then proceeded with in 

vitro validation of binding through SPR experiments and MicroScale 

Thermophoresis (MST), and indeed achieved important information about 

preferred binding motifs involved in protein-protein interaction upon calcium 

binding and we found new potential Sorcin molecular partners. 
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Altogether these experiments have given us a better understanding of the 

relationship between Sorcin activation upon calcium binding, interaction with 

its cellular binding partners and its role in MDR process, making it an 

intriguing target for cancer therapy. 
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3. Results    
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3.1 Overall structure, calcium coordination and comparison of human 
Sorcin structures: conformational changes induced by calcium binding 

We solved structures of Sorcin in complex with calcium (CaSor) and in the 

apo form (apoSor), at a higher resolution than the one solved by Xie et al. 

(Xie et al. 2001). Structures statistics are reported in Table 1. All the 

structures have the typical fold of the PEF proteins family. Briefly, the 

monomer is formed by two domains: a Gly-rich N-terminal domain (residues 

1–32), partially visible in both apo and calcium-bound structures (residues 

30–32 and 26–32, respectively), and a calcium binding domain (SCBD), 

containing eight α -helices (A-H) organized in five calcium binding motifs 

(EF1-EF5). Two helices are very long and connect two adjacent EF hands: 

the D-helix (hD) is common to EF2 and EF3, while the G-helix is common to 

EF4 and EF5 (Figure 12 a,b). EF1 is structurally coupled with EF2, and EF3 

is paired with EF4. Sorcin dimerization occurs by pairing of the EF5 of two 

monomers. In CaSor, Ca2+ is bound at EF1, EF2 and EF3 and it is hepta-

coordinated in a classical pentagonal bipyramidal configuration (Figure 12 

c,d,e). EF1 and EF2 are coupled by Gln48, which coordinates the EF1-bound 

Ca 2+, whereas in EF2 is hydrogen-bound to Thr89. 
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Table 1: Crystal parameters, data collection statistics and refinement statistics of Sorcin in the 
apoform (apoSor) and in complex with Ca2+ (CaSor). Values in parentheses are for the highest-
resolution shell. 
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Figure 12: Overall structure of calcium-bound human Sorcin and calcium coordination in Sorcin 
(a) The monomer comprises part of the flexible N-terminal domain containing an alpha helical region 
designated α 0 (red) and a calcium-binding domain (SCBD) that can be divided in two regions: EF1-3 
(blue) and EF4-5 (green). Calcium ions (yellow spheres) are bound at EF1, EF2 and EF3. The helices 
(A-H) and the EF-hands (EF1-5) are indicated. (b) Dimerization occurs through the pairing of EF4-5 of 
two monomers (cyan and magenta). The N-terminal hexapeptide modeled in the structure is shown as 
green sticks. Close-up of Ca2+ binding sites in EF1 (c), EF2 (d) and EF3 (e) reveals the classical 
pentagonal bipyramidal geometry. The involved residues are shown as sticks, water molecules as red 
spheres and calcium ions as yellow spheres. Ligand positions and coordination distances are listed. 
 
The comparison between all the known human Sorcin structures (apo human 

Sorcin, PDB code: 1JUO; apo-F112L human Sorcin mutant, PDB code: 

2JC2; apoSor, PDB code: 4UPG; CaSor, PDB code: 4USL) shows that the 
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EF1–3 region is more flexible than the EF4-EF5 region and that a large 

conformational change in the EF1-EF2 subdomain and EF3 is visible upon 

calcium binding to the first three EF hand motifs (Franceschini S et al. 2008; 

Xie et al. 2001). Indeed, the rmsd values (Table 2) measured by 

superimposing CaSor to the apoSor clearly indicate that upon calcium 

binding Sorcin undergoes a large conformational change, mainly involving 

EF1, EF2 and EF3 (Table 2, Figure 13).  
 Whole structure (SSM) 112-198 (LSQ) 

CaSor 3.13 1.52 

F112L - 0.73 

1JUO,A 1.05 0.73 

1JUO,B 2.38 1.30 

Table 2: Rmsd of known structures of Sorcin with respect to apoSor. The structures have been 
superimposed, both using the Cα atoms of residues 112-198 (LSQ method) and the Cα atoms of all the 
protein residues (SSM method) by the program COOT, apoSor has been used as reference structure. 
 

As shown in Figure 13, calcium binding to EF1, EF2 and EF3, i.e. the three 

EF hands with the highest affinity for the cation (Mella M et al. 2003), 

induces a large displacement (of about 21°) of the D-helix. The comparison 

between apoSor and the calcium-bound Sorcin structures sheds light on the 

mechanism of cation-mediated structural changes of Sorcin, which is 

fundamental for the comprehension of its function. The binding of calcium at 

the EF3 loop causes the movement of the three ligands Asp113, Asp115 and 

Ser117 towards the bidentate Glu124 ligand in the E-helix. Thus, the loop 

undergoes a rearrangement and may act as a lever dragging the long and rigid 

D-helix away from the E-helix. As a result, EF3 acts as a pivot: the first half 

of the calcium binding domain (formed by A-, B-, C- and D-helices) rotates 
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and moves away from the second half (formed by the E-, F-, G- and H-

helices), which is the dimerization subdomain and forms the stable Sorcin 

dimeric interface. 

 
Figure 13: Conformational changes induced by ion binding. The superposition of CaSor (magenta) 
and apoSor (blue) reveals the conformational variation induced by calcium (yellow spheres). The green 
arrows represent the axis of the D helix in the two structures: the binding of three Ca2+ to each Sorcin 
monomer causes a large movement of the D helix that drags the EF1-EF2 region. The panels illustrate 
the changes of EF1, EF2 and EF3 taken alone, analyzed aligning the C-terminal helix for each EF-
hand: EF1 and EF3 open upon Ca2+-binding, while EF2 is almost unchanged. 
 
 
3.2 Analysis of Sorcin solvent-accessible surface areas 

The analysis of solvent accessible surface areas has been performed with 

areaimol (CCP4 suite, http://www.ccp4.ac.uk/html/areaimol.html) and shows 

that upon calcium binding there is an increase in the exposed surface areas of 

several residues. The residues with a difference in SASA (Solvent Accessible 

Surface Areas) higher than 30% between the apo and the calcium bound form 

of Sorcin are Tyr67, Ser80, Met81, Met86, Ile110, Arg116, Gly118, Ser143 

and Ser197 (Figure 14).  
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Figure 14: Residues exposure variation upon calcium binding. (top) GetArea and Areaimol 
give the value of percentage of SAS (%SAS) per-residue, calculated as the ratio between SAS area 
of a residue X in its three-dimensional structure and SAS of its extended tripeptide Gly-X-Gly 
conformation. For each residue the difference of %SAS between CaSor and apoSor has been 
calculated and plotted to identify the surface regions with the main variations. Positive values 
indicate that the residue is more exposed in CaSor than in apoSor and vice versa. (bottom) Only 
the hydrophobic component of the surface is taken into account. Some artifact has arisen from the 
absence of side chains in the model (Arg175, Gln107). 
 

As shown in Figure 15a, the residues displaying the highest SASA 

(higher than 30%) are located in the loop preceding the C helix (hC), in 

the EF2 loop (which follows the hC), in the C-terminal part of the D-helix 

and in the EF3 loop; all these structural features present a wide calcium-

dependent rearrangement. Even if ion binding has almost no effect on the 
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relative position of helices C and D of EF2 hand, upon ion binding there 

is a reorganization of the last part of the helix C containing Met81 and of 

the loop 83–91 containing Met86, which become exposed to the solvent. 

Tyr67 is placed on the loop between helices B and C, and in apoSor it is 

hydrogen bonded to Asp113 of the EF3 loop and is partially covered by 

it. Upon calcium binding this interaction is broken since Asp113 

participates in ion coordination; the rearrangement of the EF3 loop causes 

also the exposure of Arg116 (Figure 15b). We further analyzed the CaSor 

structure using the Hotpatch server (http://hotpatch.mbi.ucla.edu/) in 

order to identify unusual hydrophobic patches likely mediating protein-

protein interactions between Sorcin and its molecular partners (Pettit F et 

al. 2007). The Hotpatch analysis highlights that besides Met86 (cyan) and 

Tyr67 (green), each Sorcin monomer has two significant regions 

consisting of three different zones, shown in Figure 15c. The pink one 

includes His108 and Met132 (pocket 1), the red one Met81, Val101, 

Trp105, Val164 (pocket 2) and the orange one Ala26, Phe27, Pro28, 

Pro34, Leu35, Tyr36, Gly37, Tyr38, Ser61, Trp99 (pocket 3). 

Interestingly, these clusters are found in the areas most affected by 

calcium dependent structural changes, namely EF1 (orange residues) and 

EF3 (red and pink residues). Moreover, both areas include tryptophan 

residues (Trp99 and Trp105) strongly conserved among the PEF protein 

family members. Supporting the importance of these regions in ligands 

binding, Colotti and coworkers previously demonstrated that mutation of 

Trp105 impairs the capacity of Sorcin to recognize and interact with 

RyR2 and annexin 7 at physiological calcium concentrations (Partha SK 

et al. 2014). 

http://hotpatch.mbi.ucla.edu/
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Figure 15: Solvent accessible surface analysis and hot-spots prediction. (a) The residues that upon 
calcium binding become more accessible (SASA increase higher than 30%) are mapped as red sticks on 
CaSor structure; Tyr67 and Met86 show the strongest variation. (b) In apoSor (blue) Tyr67 forms a 
hydrogen bond with Asp113. In CaSor (magenta) the hydrogen bond is broken and the loop moves 
away together with helix B and the EF1-EF2 region. (c) Hotpatch analysis identified 3 pockets (pocket 
1, magenta; pocket 2, red; pocket 3, orange) likely mediating protein-protein interactions. 
 

 3.3 Sorcin binds doxorubicin and other chemotherapeutic drugs with 
high affinity 

For Surface Plasmon Resonance (SPR) experiments, two types of 

sensorgrams have been measured. OneStep-SPR experiments show that 

Sorcin is able to bind doxorubicin, paclitaxel and vinblastine, with high 

affinity, in the submicromolar range (Figure 16d); FastStep-SPR experiments 

(Figure 16a) can be fitted with two binding sites, one in the nanomolar range 

and one in the low micromolar range (KD1= 10 nM; KD2= 1 μM in the 

presence of calcium; KD1 =22 nM; KD2= 2 μM in the presence of EDTA 

Figure 17a). Sorcin also binds cisplatin, with a KD = 1.7 μM (one binding 

site, Figure 16e).  
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Figure 16: Sorcin binds doxorubicin and chemotherapeutic drugs with high affinity in vitro. (a) 
SPR titration experiments in the presence of 500 μM CaCl2 and (b,c) fluorescence titration experiments 
in the presence of 0.5 μM EDTA: Doxorubicin binding to Sorcin (b) and SCBD (c) monitored by 
intrinsic fluorescence quenching. Each protein was incubated for 3 min at 25 °C in the presence of 
increasing concentration of ligand. The bars indicate the standard deviation for three independent 
experiments. The insets show the whole emission peak for each sample from one representative 
experiment. Both Sorcin and SCBD contain two binding sites for doxorubicin, with affinities in the 
nanomolar and low micromolar range. (d) SPR OneStep Experiment: Sorcin binds vinblastine, 
paclitaxel and doxorubicin directly and with high affinity; (e) SPR FastStep experiment: Sorcin binds 
cisplatin with high affinity. 
 
Fluorescence titrations (Figure 16b,c; Figure 17) were carried out by 

measuring the fluorescence at 280 nm upon stepwise doxorubicin addition to 

Sorcin (Figure 16b) and to the Sorcin calcium-binding domain (SCBD, 

Figure 16c), comprising residues 32–198 of Sorcin. The fitting of 

fluorescence titrations for both Sorcin and SCBD are compatible with 2 

doxorubicin binding sites (Figure 16; Figure 17), with affinity constants in 

the same order of magnitude with respect to those measured by SPR 

experiments, that is, 1.4 ± 1 and 734 ± 396 nM for SCBD and 0.9 ± 0.5 and 

511 ± 140 nM for Sorcin in the presence of EDTA (1.2 and 360 nM; 0.9 and 

318 nM for Sorcin, in the presence of 1 and 5 mM magnesium, respectively): 

doxorubicin binding occurs at the C-terminal calcium-binding domain, since 

SCBD retains the binding sites. Signal shift was not detected, indicating that 
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the environment of fluorophores did not change upon doxorubicin binding. 

The value obtained for KD1 is lower than protein concentration, condition that 

can cause an overestimation of the constant and large errors. We could not 

lower protein concentration due to the signal/noise ratio; however it can be 

assessed that KD1 is not greater than estimated. Therefore, Sorcin, which was 

previously shown to increase resistance to a variety of chemotherapeutic 

agents, is able to bind directly and with high affinity doxorubicin and other 

chemotherapeutic drugs in vitro; this prompted further experiments to 

understand how such binding may contribute to increase drug resistance in 

cells as a function of its expression in the cell. 

 

 
Figure 17: Doxorubicin binding to Sorcin monitored by (a) SPR titration experiments in the presence 
of 500 μM EDTA and (b, c) fluorescence titration experiments in the presence of 1 mM (c) and 5 mM 
MgCl2 (b). Each protein was incubated for 3 minutes at 25°C in the presence of increasing 
concentration of ligand. Sorcin contains two binding sites for doxorubicin, with affinities in the 
nanomolar and low micromolar range. 
 
 



62 
 

3.4 Crystal structure of the Sorcin-doxorubicin complex 
Addition of 4:1 molar excess of doxorubicin to a clear, transparent solution 

of concentrated apo-Sorcin determines clouding of the solution, aggregation 

and precipitation of the protein (similar to the precipitation observed upon 

calcium addition), with formation of a red precipitate and the slow growth of 

red-colored crystals (Figure 18a). Crystals of different intensity of red color 

grew depending on the amount of doxorubicin used for crystallization, 

ranging from 0.5:1 (colorless) to 2:1 (pink) to 15:1 (red) molar excesses. 

Emission spectra of the crystals grown from these solutions were recorded at 

100 K in the Bessy facility, exciting at 473 nm. Changes in peaks intensity 

and a 25nm red shift of the bands in high-amount doxorubicin (red crystals) 

were observed with respect to low-amount doxorubicin Sorcin crystals 

(Figure 18d). These changes are likely due to doxorubicin stacking to 

aromatic residues of the protein or doxorubicin dimerization, once bound 

(Changenet-Barret P et al. 2013). We solved the structure of the complex 

between SCBD and doxorubicin (doxo-SCBD) at quite low resolution (3.74 

Å, PDB accession: 5MRA). The asymmetric unit contains two dimers (A–B 

and C–D). The structure contains 10 Mg2+ ions (3 bound to monomer A, 2 to 

monomer B, 3 to monomer C, 2 to monomer D). Doxorubicin is bound to the 

B monomer. The protein structure is similar to apo-Sorcin and apo-SCBD 

(PDB accessions: 4UPG, 1 GJY (Ilari A et al. 2002) (Figure 18b).  
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Figure 18: Sorcin calcium binding domain-doxorubicin complex. (a) Crystal and (b) crystal 
structure of Sorcin calcium binding domain-doxorubicin complex; (c) doxorubicin binding site at EF5 
(pocket 1), stacked to Tyr188. (d) Emission spectra at 100K (λex = 473 nm) of Sorcin crystals 
containing different amounts of doxorubicin. Changes in peaks intensity and a 25nm red shift are likely 
due to doxorubicin stacking to aromatic residues or dimerization, once bound to Sorcin. 
 
The superimposition between the Cα trace of doxo-SCBD with the Cα trace 

of apo-Sorcin yields an rmsd of 1.11 Å, indicating that the structures are 

similar and therefore neither Mg2+ ions binding nor doxorubicin binding are 

able to promote the conformational changes induced by calcium ions in 

Sorcin. In accordance with binding experiments, doxorubicin binding occurs 

at two sites. Inspection of the Fo-Fc electronic density map allowed the 

identification of two peaks (Figure 19): one close to the EF5 hand, which 

does not bind calcium in Sorcin and is responsible for dimer formation, and 
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the other close to the D-helix connecting the EF2 and EF3 sites at the 

interface between the two dimers.  

 
Figure 19: Fo-FC omit maps of doxorubicin binding sites. (a) Fo-FC omit map contoured at 3σ 
(blue), calculated in the absence of doxorubicin, showing doxorubicin binding to EF5; the helices 
surrounding doxorubicin are indicated. (b) blow up of the Fo-FC omit map contoured at 3σ, showing 
the peak of density at pocket 2, at the interface between two dimers of the asymmetric unit. 
 
We succeeded in modeling the doxorubicin molecule in the first site (close to 

the EF5) whereas it was not possible to model the doxorubicin molecule in 

the second site (close to the D helix) indicating both the low occupancy of the 

site and the flexibility of the doxorubicin molecule (Figure 19). These sites 

have been previously identified as Pocket 1 and Pocket 2, able to bind protein 

targets, in another PEF protein, that is, PDCD6 (ALG-2) (Suzuki H et al. 

2008). The binding of doxorubicin to SCBD in pocket 1 involves a stacking 

interaction of the drug with the aryl ring of Tyr188 of one monomer and 

interaction with Asp177, Gly182, Phe173 and Phe134 of the two-fold 

symmetry related monomer at the dimeric interface (Figures 18b,c). In the 

second putative site (pocket 2) doxorubicin likely interacts with Trp105 and 

Phe134 (Figure 19b). Probably doxorubicin binding to the second site would 

be facilitated by the binding of calcium ions which, as previously described, 

induce a conformational change promoting the movement of the D-helix and 

the exposure of hydrophobic interfaces. In the structure, magnesium is bound 
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to EF3 and to part of EF1 and EF2 sites, showing that in Sorcin the first three 

EF-hands can bind not only calcium, but also magnesium, with rather high 

affinity, and that EF3 is the site endowed with the highest affinity for divalent 

cations, responsible for Sorcin cation-dependent activation. 

 

3.5 Sorcin localization responds to doxorubicin treatment 
In H1299 lung cancer cell line, Sorcin (green fluorescence) localizes to cell 

membrane, nucleus, ER and cytosol, as already observed in other cellular 

systems (Lalioti VS et al. 2014). Upon treatment with doxorubicin, Sorcin 

localization changes with respect to control: after 1-h doxorubicin treatment, 

cytosolic Sorcin localization increases and nuclear, ER and membrane 

localization decreases; the ratio of cytosol/(nuclear+ER) Sorcin fluorescence 

increases by 77% (from 0.278 to 0.491, number of cells= 60, P<0.01, Figure 

20). This is a clear indication that Sorcin localization responds to doxorubicin 

treatment and that Sorcin presumably binds doxorubicin also in the cell, upon 

drug entry. 

 
Figure 20: Sorcin localization changes upon doxorubicin treatment. Sorcin localization (green 
fluorescence) in (a) control H1299 cells and in (b) H1299 cells treated for 1 h with 0.6 μM doxorubicin. 
(c) ratio between cytosol/(nucleus+ER) fluorescence (n=60 cells; P<0.01). 
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3.6 Effect of Sorcin expression on doxorubicin uptake and toxicity, and 
cell death 
Sorcin is expressed at high levels in human and in many cell lines (PaxDB). 

We have analyzed Sorcin expression in different cell lines from lung, cervix 

and breast cancers and we evidenced that Sorcin is expressed in all tested cell 

lines, but the levels differ even by more than one order of magnitude between 

different lines. In particular, Sorcin is highly expressed in lung cancer cell 

lines Calu-1 and H1299, that we have selected for further studies, and in 

breast cancer cell lines MDA-MB-231 and MDA-MB-468, while low Sorcin 

expression levels were observed in lung A549 and in cervical cancer HeLa 

cells (Figure 21a). Sorcin high level of expression occurs in cell lines rather 

resistant to cell death upon treatment with doxorubicin, as H1299, Calu-1 and 

MDA-MB-468 cells, while A459 and HeLa cell lines, where Sorcin 

expression is lower by about 90%, are more sensitive to doxorubicin 

treatment (Figure 21a). 

To support the relevance of Sorcin in doxorubicin treatment response, we 

proceeded with Sorcin silencing experiments. In all tested cell lines, siRNA 

cds3 effectively silences Sorcin expression, by at least 85% after 24–48 h 

(Figure 21b). In the H1299 line, 94±3% silencing occurs. Interestingly the 

silencing of Sorcin expression is also maintained upon doxorubicin treatment 

(Figure 21c). 
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Figure 21: Sorcin expression versus cell death, and Sorcin silencing in H1299 cells. (a) (Top) 
Western blot experiment showing the expression of Sorcin in lung carcinoma Calu-1, A459 and H1299 
cells; cervix adenocarcinoma HeLa; breast adenocarcinoma MDA-MB-468 and MDA-MB-231 
(bottom). Cell death is increased upon 24 h doxorubicin (0.6 PM) treatment in A549 and HeLa cells, 
where Sorcin expression level is reduced by 480% with respect to H1299 cells. (b) Experiment 
showing efficiency of Sorcin silencing in control experiments (+Lipofectamine;+scrambled siRNA; + 
siRNA 3’UTR) vs. silencing using CD53 siRNA. (a and b represent duplicate experiments). (c) 
Silencing level using CD53 siRNA= -94±3%. Controls vs. 24 and 48 hours treatment with 0.6 μM 
doxorubicin. 
 

Sorcin silencing by siRNA cds3 (versus control experiments with scrambled 

siRNA) slightly increases cell death (Figure 22), as shown by both cell count 

and by flow cytometry experiments on cells stained with Sytox blue, a 

cyanine dye that is completely excluded from live eukaryotic cells.  

Upon Sorcin silencing, doxorubicin-dependent cell death is markedly 

increased in H1299 cells (Figure 22b,c): upon treatment with scrambled 

siRNA and 0.6 μM doxorubicin, the percentage of dead H1299 cells 

increases from 3.4% (control) to 4.6% and 16.3% (24 and 48 h after 

doxorubicin treatment, respectively), while upon treatment with Sorcin-

directed siRNA and 0.6 μM doxorubicin, the percentage of dead H1299 cells 

increases from 4.5% (control) to 10.3% and 29.7% (+124% and +82%, 24 

and 48 h after doxorubicin treatment, respectively).  
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Further, Sorcin silencing increases doxorubicin entry in H1299 cell nuclei by 

140% as shown by analysis of confocal microscopy experiments (Figures 

23a,b). FACS experiments (Figure 23c) show that upon treatment with 

scrambled siRNA and 0.6 μM doxorubicin, the percentage of doxorubicin 

incorporation increases from 0.4% after 30 min to 3.4% after 1 h to 49.6% 

after 3 h doxorubicin treatments, while upon treatment with Sorcin-directed 

siRNA and 0.6 μM doxorubicin, the percentage of doxorubicin incorporation 

increases from 0.8% after 30 min to 7.1% after 1 h to 72.7% after 3 h 

doxorubicin treatments (+100%, +109%, +47%, respectively). After 5 h 

incubation with doxorubicin, the buffering capacity of Sorcin is almost lost 

(Figure 23d). 

In the presence of high levels of Sorcin, doxorubicin is therefore prevented 

from entering the nuclei of H1299 cells, and the cells are protected from 

drug-dependent DNA damages.  

 
Figure 22: Sorcin silencing increases cell death upon treatment of H1299 cells with 0.6 PM 
doxorubicin, cell counts and Sytox Blue incorporation (a) Cell count and (b) cell death percentage 
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upon treatment of H1299 cells with scrambled siRNA or Sorcin siRNA in control and doxorubicin-
treated cells. (c) Cell death percentage upon H1299 cells transfection with scrambled siRNA or Sorcin 
siRNA in control and 0.6 μM 48 hours doxorubicin-treated cells. 
 

Sorcin protects cells, while Sorcin silencing increases doxorubicin-dependent 

Poly(ADP-ribose)polymerase (PARP) cleavage (Figure 24), an apoptotic 

marker. In cells treated with Sorcin-directed siRNA, 48 h after treatment with 

0.6 μM doxorubicin, the levels of cleaved PARP are higher than in control 

cells. An even higher increase of doxorubicin-dependent PARP cleavage 

upon Sorcin silencing in doxorubicin-treated cells can be measured by 

calculating the ratio between the intensities of cleaved versus full-length 

PARP. 

 

 

 
Figure 23: Sorcin silencing increases doxorubicin accumulation in H1299 cells. (a) Confocal 
microscopy images, showing the nuclear accumulation of doxorubicin upon 3 h treatment in H1299 
cells treated with scrambled siRNA or with Sorcin siRNA; (b) nuclear doxorubicin incorporation by 
fluorescence quantification (n=60 cells; P<0.0001); (c) time-dependent quantification of doxorubicin 
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incorporation in H1299 cells by FACS; (d) doxorubicin accumulation in H1299 cells upon Sorcin 
silencing (bottom) with respect to scrambled RNA (top), after 3 hour- (left) and 5-hour treatment 
(right). 

 

 
Figure 24: PARP cleavage experiment upon 48 hours 0.6 μM doxorubicin treatment. (a) upon 48 
h doxorubicin treatment, in Sorcin-silenced cells PARP cleavage is increased with respect to control 
cells (n=3, P<0.01).  (b) Western blot analysis showing that upon Sorcin silencing, there is a negligible 
cleavage of PARP, compared to the combination of Sorcin-directed-silencing and doxorubicin 
treatment (PARP FL: PARP full length; PARP CL: PARP cleaved). 
 

 

3.7 Effect of Sorcin expression on MDR1 expression and activity 
The effect of Sorcin expression on doxorubicin uptake and toxicity can be 

explained in part by the direct binding of doxorubicin by Sorcin, that may 

prevent the drug entry in the nucleus. However, doxorubicin is also a 

substrate of the efflux pump MDR1 (Borst P, Elferink RO 2002) whose gene 

is located in the same amplicon of Sorcin gene (van der Bliek AM et al. 

1986). Conflicting results are in literature on the effect of Sorcin expression 

on MDR1 expression and activity (Lee WP et al. 1996; Wang SL et al. 1995; 

Xu P et al. 2015; Yamagishi N et al. 2014).  

Figure 25 shows that Sorcin silencing decreases both MDR1 expression and 

activity in H1299 cells, as already demonstrated in A549 cells (Gao Y et al. 

2015) by about 40%. In cells treated with Sorcin-directed siRNA the MDR1-

mediated efflux of rhodamine123 is substantially decreased with respect to 
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control cells treated with scrambled siRNA, showing a decrease of the 

activity of MDR1 in Sorcin-silenced cells (Figure 25a,b): the level of 

intracellular rhodamine123 in H1299 cells treated with Sorcin-directed 

siRNA is increased by 27, 51 and 67% (upon 30 min, 1 h and 2 h incubation 

with the MDR1 substrate, respectively) with respect to control cells. MDR1 

expression level is also strongly decreased by Sorcin silencing: in cells 

treated with Sorcin-directed siRNA, a 45% decrease in MDR1 level occurs 

with respect to H1299 control cells (Figure 25c,d), with no relevant 

contribution of doxorubicin. 

 
Figure 25: Sorcin silencing decreases MDR1 expression and activity in H1299 cells. (a) 
Rhodamine123 fluorescence is increased (and therefore its efflux is decreased) and (b) the 
incorporation of rhodamine123, in a time-course experiment performed at 37°C, (top) 30’, (center) 1h, 
(bottom) 2h after incubation with the dye. Black and blue curves represent the non-treated cells (in the 
presence of scrambled siRNA and upon Sorcin silencing, respectively), while red and purple curves 
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represent the cells treated with rhodamine123 (in the presence of scrambled siRNA and upon Sorcin 
silencing, respectively). (c) MDR1 expression is decreased in Sorcin-silenced H1299 cells with respect 
to control cells (n= 3, P<0.001), (d) western blot experiment showing a decrease in MDR1 protein level 
upon Sorcin silencing, both 24h and at 48h after treatment with siRNA. 
 
 

3.8 Sorcin binds to Retinoic acid and changes localization  

Differentiation is a complex rearrangement of cellular physiology and it is 

used as a strategy to treat Acute Promyelocytic Leukemia (APL) to induce 

cell growth arrest (Degos L, Wang ZY, 2001).  

Since Sorcin is an important calcium sensor oncoprotein, overexpressed in 

many leukemias (see the Chapter 1), we wondered whether it might exert a 

role in differentiation induction upon retinoic acid (RA) treatment.  

To this end, NB4 promyelocytic cell line was treated with RA to induce 

granulocytic differentiation, checked in a time course experiment (Figure 26), 

in order to dissect the role of Sorcin in this process.  

 
Figure 26: NB4 differentiation time-course treatment with �PM RA: (a) Optical microscopy 40X 
images giemsa-stained used to check for the cell morphology and differentiation; upon RA treatment 
promyelocytic cells undergo a cellular rearrangements where the cytoplasm become larger and clear-

https://www.ncbi.nlm.nih.gov/pubmed/?term=Degos%20L%5BAuthor%5D&cauthor=true&cauthor_uid=11704842
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20ZY%5BAuthor%5D&cauthor=true&cauthor_uid=11704842
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stained than nuclear portion compared to controls, and the nuclei lose their typical rounded shape. (b) 
Cells were counted in a burker chamber in triplicates to assess the growth arrest.  
 
Then, the mRNA and protein expression were checked by RT-PCR and 

western blot respectively and no changes in mRNA levels (data not shown) 

were detected, while a little (1.5 fold) increase in Sorcin expression was 

observed (Figure 27b).  

Nucleus/cytoplasm fractioning experiments revealed that Sorcin expression 

does not increase consistently upon RA treatment but rather the protein 

changes its localization. Indeed, confocal microscopy investigation shows 

that Sorcin, 72 hours after RA treatment, migrates towards cell membranes or 

insoluble fraction as shown in figure 27 a and b. 

These preliminary data need further experiments to shed light on the role of 

Sorcin in granulocytic differentiation; indeed we observed that Sorcin 

interacts directly with RA, with a single binding site. KD values in the low 

micromolar range were obtained by fitting OneStep experiments (KD=2.5 

PM), and FastStep SPR experiments (KD=5 PM) (Figure 27c). These 

investigations bring insights on novel Sorcin roles and molecular partners so 

far un-dissected. 
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Figure 27: Sorcin binds to RA and migrates to cell membranes. (a) Confocal microscopy images of 
NB4 cells upon 72 hours RA treatment, TO-PRO-3 stain for the nucleus is in blue, Sorcin antibody is 
in green, notice that Sorcin migrates to membranes (cellular or nuclear membranes) after treatment. (b) 
Western blot quantification of NB4 total, insoluble and soluble fractions; as shown, the contribute to 
the total fraction is given by the insoluble portion (n=4). (c) SPR experiments OneStep (top) and 
FastStep (bottom) revealed a single site Sorcin-RA interaction with a KD in the range of low 
micromolar. The OneStep experiment was performed using a gradient of analyte concentration 
reaching a maximum of 20PM RA, while the FastStep experiment was performed using 7 serial 
dilutions (1:2) of analyte from 3.12 to 200 PM RA. 
 
 
3.9 Analysis of N-terminal peptide-Sorcin interaction 
The analysis of the CaSor structure reveals the presence of an electron 

density peak in the cavity formed upon calcium binding and the consequent 

tilt of the D-helix. We fitted this electronic density map with the GYYPGG 

hexapeptide belonging to the N-terminal region of Sorcin (residues 12–17). 

The same region was thought to interact with PDCD6 N-terminal peptide by 

Jia J et al.; Suzuki et al. demonstrated that it probably was PEG demonstrated 

that it probably was PEG. We can exclude PEG binding to Sorcin structure: 

the Fo-Fc and 2Fo-Fc electron density maps shows clearly the presence of a 

short peptide containing side chains with a very well resolved proline residue 

clearly visible in the structure (12-GYYPGG-17; Figure 28), belonging to a 

different dimer. The interacting surface between the N-terminal peptide and 

Sorcin was analysed using the program ePISA (http://www.ebi.ac.uk/msd-

srv/prot_int/cgi-bin/piserver). The residues buried at the interface between 

peptide and Sorcin are: Met78, Met81, Leu82, Glu97, Ala100, Val101, 

Gly104, Trp105, His108 placed on the D helix; Phe112 on the EF3 loop; 

Thr131, Met132, on the EF4 loop; Val164, Arg167, and Asp171 on the G 

helix. Trp105, Glu97 and Arg167 form hydrogen bonds with Tyr13 and 

Tyr14 of the peptide (OH Tyr13-OE2 Glu97 = 2.78 Å; O Tyr13-NE1 Trp35 

= 2.74 Å; O Tyr14-OE2 Glu97 = 2.90 Å) (Figure 28b). The residues laying 

on the D helix play a major role in interacting with the N-terminal peptide; in 
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particular, Trp105 establishes a strong stacking interaction with Pro15 and is 

hydrogen bonded to the carbonyl group of Tyr13, determining the orientation 

of the peptide into the pocket which is opposite to that of Alix in PDCD6. 

These residues belong to pockets 1 and 2, identified by Hotpatch analysis 

(Figure 15C). 

 
Figure 28: Interaction between Sorcin and the N-terminal peptide. (a) The electrostatic surface 
potential (blue-positive, red-negative) of CaSor dimer is shown. The hydrophobic surface 
corresponding to pockets 1–2 accommodates the 12-GYYPGG-17 peptide (green) plausibly belonging 
to an adjacent Sorcin molecule in the crystal (green cartoon); the residues 11–25 are not visible (green 
dashes). (b) Close-up of the peptide binding region: the peptide is shown as green sticks, the residues 
interacting with the peptide are depicted as magenta sticks, and the hydrogen bonds between Trp105-
Tyr13 and Glu97-Tyr13 are indicated as black dashes.  
 
3.10 Phage display selection in presence of EDTA and calcium 
To investigate if the structural changes conferred by Ca2+ binding translate 

into specificity changes, we used Sorcin as a bait protein against a highly 

diverse M13 phage display library that displays 16mer peptides on the major 

coat protein p8. 

Selections were performed in the presence of EDTA (1 mM) or Ca2+ (1 mM) 

and were in both cases successful as judged by pooled phage ELISAs (i.e. 

signal to background > 2). Sequencing of individual clones (38 and 20 clones 

from the selections in presence or Ca2+ and EDTA, respectively) revealed 
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that the majority of ligands contains a conserved Pro and that the main 

consensus motif under both conditions is a relaxed Φ/Gly/Met-Φ/Gly/Met-x-

P, where Φ/Gly/Met is an aromatic residue (Trp, Tyr or Phe) or a Gly or Met 

residue, and x is any amino acid (Figure 29, top). The consensus sequence 

agrees with the GYYPG peptide belonging to the Sorcin N-terminal domain, 

identified in the Sorcin binding site in our crystal structure. In addition, there 

is a set of peptides that lack a clear Φ /Gly/Met-Φ/Gly/Met-x-P motif but 

instead contains an acidic-Φ motif (Figure 29, bottom).  

 
Figure 29: WebLogo outputs of consensus peptide motifs identified through peptide phage 
display. (top) The Φ/Gly/Met-Φ/Gly/Met-x-P motif is based on 34 unique peptide sequences, of which 
20 were obtained from a phage selection performed in the presence of 1 mM Ca2+. (bottom) The acidic-
Φ motif is from 18 unique peptides of which 16 were selected in presence of Ca2+. 
 
Such peptides are more frequently observed in presence of Ca2+ (47% of 

sequenced peptides) than in the presence of EDTA (15% of sequenced 

peptides). In a cellular context, likely Sorcin can establish interactions with a 

variety of ligands containing the main Φ/Gly/Met-Φ/Gly/Met-x-P motif, or 

the acidic-Φ motif found in intrinsically disordered regions of target proteins. 
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Such interactions might be facilitated by the exposure of hydrophobic 

binding surface in Sorcin upon Ca2+ binding, as suggested by the structure. 

However, peptide binding might occur also in absence of Ca2+ if the preferred 

target is readily available as in the high avidity p8 phage display. Indeed, the 

presence of a high affinity ligand might shift the equilibrium towards the 

open conformation. Further detailed mechanistic studies should shed light on 

this issue. 

 
3.11 Proteomic peptide phage display (ProP-PD) selection in the 
presence of calcium, and dataset analysis (pipeline) 
The phage selection in presence of 1 mM EDTA did not result in any 

significant enrichment of binding motifs (data not shown), thus we focused 

on the 1 mM calcium selection. In this selection there was an enrichment of 

binding clones throughout the selection (see Methods). Significant 

enrichment of selected phages was obtained on the 4th round of selection as 

determined by pooled phage ELISA (signal to background > 2). This pool 

was then subjected to clonal sequencing analysis and Next Generation 

Sequencing. This resulted in a list of potential binding clones, as shown in 

Figure 30 and Appendix 1. 
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Figure 30: Next generation sequencing outcome on 4th round of phage selection. Selected bound 
phages from the 4th round of selection underwent NGS analysis that resulted in a list (dataset) of 
peptide sequences. Each peptide sequence is associated to a count number that corresponds to how 
many times it has been found in the sequencing analysis. A preliminary sorting was based on counts 
number, and a threshold of minimum 2 counts was set. In the red squares there are the peptide 
sequences derived from the clonal analysis. 

Once the dataset was obtained, we established a pipeline to sort out 

unspecific binding clones, based on bioinformatics tools. 

The pipeline consists in: 

- Counts in NGS 

- Enrichment in binding motif/s based on combinatorial phage display 

- Biological function (GO TERM) 

- Sequence conservation (Ensembl, PepTool, Consurf) 

- Bait protein interaction with binding partners (Cytoscape on BioGrid 

and INTACT networks of interaction) 
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- Bait protein cellular/subcellular/tissue colocalization with binding 

partners (Compartments, PaxDB, Human Protein Atlas) 

Based on the NGS counts: PPP1R3G, ZNF622, CBL and HLF were selected 

(>2 counts); if the other dataset peptides are comprised in one or more of 

pipeline steps they can be included in the final list of targets.  

The GO TERM biological function was evaluated with PepTools, DAVID 

and Generic GO TERM finder (Figure 31 a,b; Appendix 2), highlighting an 

enrichment in proteins involved in negative regulation of relaxation in 

skeletal and cardiac muscle, as well as nucleotide metabolism, calcium-

related processes and biological regulation. Furthermore, a preferred motif 

was found in the dataset with WebLogo (Figure 31c). The motif is 

[FILMPV].[DEST] quite comparable to the motifs derived from 

combinatorial phage display selections (IIxP; E/DI). 
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Figure 31: GO TERM enrichment and preferred motif. (a) GO TERM finder tool reported an 
enrichment in peptides belonging to proteins involved in cariac/skeletal muscle relaxation process, 
biological regulation and nucleic acids metabolism. (b) Table ranking the biological functions found 
with PepTool and DAVID, p-value-based. (c) the WebLogo analysis of the dataset showed an 
enrichment in the FILMPV.DEST motif, with a coverage of 93% of peptide’s dataset. 

Further, the dataset peptides were analyzed with software as Compartments 

(http://compartments.jensenlab.org/Search) (Table 3), for subcellular 

localization, and PaxDb (http://pax-db.org/) and Human Protein Atlas 

(http://www.proteinatlas.org/) for tissue localization (Table 4 and Figure 32); 

the targets that shared tissue localization using both tools are PDE4D, 

PDE4B, OSBPL9, TLE2, PKP4, NMT2, LRBA, MAST2, CEP97. 

http://compartments.jensenlab.org/Search
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Table 3: Compartments results for subcellular localization. The output of the Compartments tool 
gives the subcellular localization information based on experimental knowledge, literature and 
prediction. Five peptides co-localize with Sorcin in the compartments listed in the square in the right 
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Table 4: PaxDb Sorcin tissue expression. Sorcin is well expressed in the whole body as in many 
organs and tissues (here listed some of them). Proteins from the dataset that shares ≥ 3 hits in common 
with Sorcin are listed in the square at the right side. 
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Figure 32: Sorcin tissue RNA expression in Human Protein Atlas. Human Protein Atlas gives only 
Sorcin RNA expression information, in the right-side square are listed the dataset peptides that share 
with Sorcin the same RNA tissue expression. 

Beside the cellular and tissue localization, in order to evaluate whether the 

proteins from the dataset share common binding partners with Sorcin, a 

protein-protein interaction network was performed using Cytoscape. 

Information of binders listed in the BioGrid and INTACT databases were 

used as inputs for each protein of the selected dataset. These networks were 

then merged with Sorcin network and only the first of first neighbour 

network was selected resulting in the networks shown in Figure 33. 

The green squares are the matches between the BioGrid/Intact networks of 

targets and Sorcin. Biogrid network has: NMT2, OSBPL9, STAT4, GSE1, 

LRBA, F5, HRG, MAST2, GCNC1, CBL, NUP214; while Intact network 

has: NMT2, CBL, NUP214, LRBA, HRG, CACN1B, GNL3L, CDC5L, 

MSK1. Interestingly some are shared in both networks. 
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Figure 33: Cytoscape networks built on BioGrid and Intact interaction databases. Both networks 
(BioGrid left; Intact right) have matches in the peptide dataset, meaning that some proteins might be in 
networks related to the bait protein. 

The abovementioned findings were applied as a filter on the dataset and a 

first list of targets was generated combining these information with the 

protein functions (Table 5, source Uniprot).  Several peptides contained Pro 

flanked by hydrophobic residues (I) and/or hydrophobic residues flanked by 

acidic residues (D, E) e.g:�IIxP and E/DI, consistent with previous results. 

However some of the positively filtered peptides (SYT16, MAST2, CAC1B) 

did not contain aforementioned motifs although they may potentially use 

different binding ways. Based on the sequences, the counts, the cellular/tissue 

localization, related interaction networks and biological relevance (e.g: 

involvement in same biological processes) following peptides were chosen 

for further analysis (Table 5). 

PP13G (255) YTFTEWRSFLDVPAEL Glycogen-targeting subunit for protein phosphatase 1 (PP1). 
Involved in the regulation of hepatic glycogenesis in a manner coupled to the fasting-feeding cycle 
and distinct from other glycogen-targeting subunits  

ZNF622 (14) LEFADFYDFRSSYPDH May behave as an activator of the bound transcription factor, 
MYBL2, and be involved in embryonic development 
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CBL (4) PRLDLLPQRVAVPSSA Adapter protein that functions as a negative regulator of many 
signaling pathways that are triggered by activation of cell surface receptors. Acts as an E3 ubiquitin-
protein ligase promoting protein degradation by the proteasome. Recognizes activated receptor 
tyrosine kinases and terminates signaling.  

HLF (4): HPGIPSPNCMQSPIRP Hepatic leukemia factor is a transcriptionally controlled transcription 
factor. Binds to DNA sites required for the transcription of alpha 1-antitrypsin, apolipoprotein CIII, 
transthyretin genes and HNF1-alpha. May be essential for development of the liver, kidney and 
intestine. 

CAC1B (2) SYVSSLTSQSHPLRRV Voltage-sensitive calcium channels (VSCC) mediate the entry of 
calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, 
including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, 
cell division and cell death. The isoform alpha-1B gives rise to N-type calcium currents.  

SYT16 (2) EQKPKFSRSLLTHGED May be involved in the trafficking and exocytosis of secretory 
vesicles in non-neuronal tissues. Is Ca2+-independent. 

CBPZ (2) PGQHELMEPEVKLIGN Cleaves substrates with C-terminal arginine residues. Probably 
modulates the Wnt signaling pathway  

MAST2 (2) LSPREQGKTQPPSAPR Appears to link the dystrophin/utrophin network with microtubule 
filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for 
associated proteins. 

NPAT (2) ETTVPFPEESIVPAAK Required for progression through the G1 and S phases of the cell 
cycle and for S phase entry.  

STAT4 (2) VPSVFIPISTIRSDST Carries out a dual function: signal transduction and activation of 
transcription. Involved in IL12 signaling. 

TJP1 (2) GRAWPLPSSSRPQRSP May be involved in transducing a signal required for tight junction 
assembly and stabilization. Plays a role in the regulation of cell migration  

TSYL2 (2) RWPTETPSRPYGFQSG Part of the CASK/TBR1/TSPYL2 transcriptional complex that 
modulates gene expression in response to neuronal synaptic activity. May inhibit cell proliferation  

NUP214 (1) LVPERETLFNTLANNR May serve as a docking site in the receptor-mediated import of 
substrates across the nuclear pore complex 

CEP97 (1) LIPEHSSPVQDAQISQ Acts as a key negative regulator of ciliogenesis in collaboration with 
CCP110 by capping the mother centriole thereby preventing cilia formation. Required for 
recruitment of CCP110 to the centrosome 

http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q16534&ali_start=110&ali_end=175
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Table 5: Summary of positively filtered binding peptides (source: UniProt). The sequencing counts 
are in brackets and the corresponding peptide sequence in bold; the motif-like residues are underlined. 
The five highlighted peptides were confirmed by ELISA assay and sequencing, the remaining targets 
were not confirmed after sequencing (see below). 

The sequencing results together with the outcome of the clone phage ELISA 

for the aforementioned targets, confirmed five positive clones, highlighted in 

Table 5. A phage clone is considered as a positive binder if the absorbance 

ratio at 450 nm between the protein and the negative control is higher than 2 

(Figure 34). The absorbance is measured at this wavelength because the 

TMB (3,3',5,5'-tetramethylbenzidine) soluble substrate that detects 

Horseradish Peroxidase (HRP) in presence of sulfuric acid has an absorbance 

maximum at 450 nm. 

 

Figure 34: Phage clones ELISA. Target peptides confirmed after sequencing, (CEP97 was checked in 
duplicate). Only the clones with positive signal (ratio>2) were sequenced. 

For the other clones from chosen set (CBL, STAT4, ZNF622, CBPZ, 

MAST2, NPAT, TJP1, TSYL2, HLF), no results are available, as the 

presence of constructs was not confirmed by sequencing (data not shown). 
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Intrinsically disordered regions of the proteins are not necessarily highly 

conserved; however, in case they are conserved, they probably have to be 

relevant for some biological interaction. To this end we checked for sequence 

conservation using PepTools in metazoan and Ensembl in placental 

mammalian and Consurf with no constraint. Ensembl multiple sequence 

alignment has also been represented with WebLogo (Figure 35); then 

Peptools overall 16-mer sequence conservation was associated to a score 

(0=conserved; 1=not conserved): here we established a threshold of 0.5 

(Appendix 3). Ensemble and Consurf alignment was performed on the 5 

confirmed targets, while Peptool alignment was performed on the complete 

peptides dataset (Appendix 3). 

 

Figure 35: WebLogo analysis on peptides sequence alignment. Multiple sequence alignment was 
performed with Ensembl on the phage clones ELISA-validated targets. As shown, in placental 
mammalian subgroup, the five sequences appear to be rather conserved, except for PPP1R3G and 
SYT16. 

Although PPP1R3G and SYT16 appear not to be as conserved as the other 

three targets, it is worth noticing that hydrophobic residues appear to be more 
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conserved than the others in PPP1R3G, as in SYT16 acidic residues and 

leucine. 

Taken together, the filters of the pipeline allowed us to pick 5 out of 60 

peptide targets for further in vitro binding validation; these targets are: 

PPP1R3G, CEP97, SYT16, CACN1B, NUP214. 

 

3.12 Mutagenesis of putative crucial residues involved in Sorcin-targets 
interaction and binding affinity analysis through SPR and MicroScale 
Thermophoresis (MST) experiments 

To probe key binding residues of the motifs, a mutagenic analysis of the 

binding peptides was performed (See materials and methods). Due to some 

technical difficulties and phage cross-contamination, the analysis was only 

finalized for the CEP97 peptide. The mutations were designed based on 

Sorcin preferred binding motif (ΦΦxP and D/EΦ). In case of CEP97, this led 

to the mutation of an “IPE” triplet at the beginning of the sequence, to 

“AAA”. The phage ELISA assay of the mutant CEP97 confirmed that the 

“IPE” stretch is crucial for Sorcin binding (Figure 36). 
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Figure 36: Phage ELISA assay validation on mutated peptide (LAAAHSSPVQDAQISQ) and 
wild type peptide (LIPEHSSPVQDAQISQ). In all of the three mutated clones the binding is 
disrupted, suggesting that the “IPE” stretch is crucial for Sorcin binding. 

The five peptides were chosen in vitro for affinity determinations through 

MST: PPP1R3G, SYT16, CAC1B, CEP97, NUP214. The affinity 

measurements were performed in the presence of calcium (100 PM CaCl2). 

Figure 37 shows examples of MST fitted traces with their KD values 

summarized in the table. Regarding NUP214, no fit was possible thus no KD 

is available. 
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Figure 37: In vitro Sorcin-peptides binding experiments using MST. The four traces represent 
single MST experiments between Sorcin and PPP1R3G, CEP97, SYT16, CAC1B; no binding event 
was detected for NUP214.  PPP1R3G and SYT16 traces were fitted with a T jump model, while CEP97 
and CAC1B were fitted with a thermophoresis plus T jump model. In the table the KD values calculated 
on three experiments are reported, with the corresponding standard deviation values. 

The MST analysis showed a reasonable affinity for four out of five targets, 

even though the standard deviations are rather high and the quality of the 

fitting rather poor. Indeed the best fitting model should be the thermophoretic 

one, that takes into account the behaviour of the complex after the IR-laser is 

activated and molecules flow induced. On the contrary, the T jump and 

thermophoretic plus T jump models take into account the temperature jump 

induced by the IR-laser, thus the changes detected might be due to transient 

environmental changes around the fluorophore. Since the MST results were 

not sufficient as a validation of binding affinity for the selected peptides, SPR 

experiments were performed immobilizing Sorcin on the chip (as the ligand) 

and using the five peptides as analytes, using the HBS buffer supplemented 

with 500PM CaCl2, in a traditional SPR experiment setup. 

The fitting and affinity analysis was possible only for CEP97, that binds to 

Sorcin with a KD=104PM (Figure 38). 
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Figure 38: SPR experiments and linear fitting for CEP97-Sorcin binding. Traditional SPR 
experiment was performed with 1:2 increasing concentrations of the analyte in presence of 500PM 
CaCl2. The Scatchard plot is in the inset; linear fitting analysis give a KD=104�PM. 

In conclusion, through ProP-PD selection, further bioinformatics filtering 

analysis and subsequent in vitro binding validation, it has been possible to 

identify a novel Sorcin binding partner, CEP97. The low binding affinity is 

consistent with the ability of disordered binding regions to undertake 

transient interactions, crucial for biological processes regulation.  

CEP97 is a negative regulator of ciliogenesis that acts in collaboration with 

CCP110 for the prevention of cilia formation; this interaction might open 

intriguing perspectives on Sorcin role during cell division (Lalioti VS et al. 

2014). 

Nevertheless additional information about binding characterization is 

necessary, as the binding affinity validation on the whole protein and/or co-

Immunoprecipitation experiments in cells. 
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3.13 Selective calcium-dependent interactions between Sorcin and 
targets 

The interactions between Sorcin and PDCD6 (programmed cell death protein 

6) (formerly called Alg-2) a member of the PEF protein family, endowed 

with Sorcin N-terminal consensus binding motifs was tested by both SPR and 

colocalization experiments. PDCD6 has a role in the mechanisms of 

apoptosis onset, and was shown to interact with N-terminal peptide of 

annexin 11 in the presence of 50 μM Ca2+, with a higher affinity than Sorcin 

(Satoh H et al. 2002). PDCD6 has 36% identity with respect to Sorcin, 

displays similar structure and displays residues as Trp95 Arg125 and Met71, 

conserved also in Sorcin, which allow its interaction with Alix (Suzuki H et 

al. 2008) and potentially with the Sorcin N-terminal domain. Moreover, 

PDCD6 displays an N-terminal domain similar to that of Sorcin, and 

containing Φ/Gly/Met-Φ/Gly/Met-x-P sequences identified as Sorcin-

interacting motifs.  

SPR experiments show that both the whole Sorcin and SCBD are able to 

interact with PDCD6 in the presence of calcium, with a KD = 3.5 μM (Figure 

39 A1-A2). In the presence of EDTA, SCBD interacts with PDCD6 with a 

KD =5 μM whereas the calcium-free Sorcin interacts with PDCD6 with an 

even lower affinity (KD =12 μM Figure 39 B1-B2). Both association and 

dissociation are faster in the presence of calcium than in the presence of 

EDTA. The N-terminus has therefore an inhibitory activity in Sorcin-PDCD6 

interaction at low calcium concentrations. Additionally, both Sorcin and 

SCBD interact with the N-terminal domain of PDCD6, with KD =5 μM for 

Sorcin and KD =6 μM for SCBD (Figure 39 C1-C2). Partial colocalization 
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between Sorcin and PDCD6 takes place in perinuclear regions of 

differentiated 3T3-L1 adipocytes and in the midbody of 3T3-L1 

preadipocytes (Figure 39b). Sorcin also colocalizes with annexin 7 and 

annexin 11, which possess N-terminal domains containing Φ/Gly/Met-

Φ/Gly/Met-x-P sequences, in the midbody of 3T3-L1 preadipocytes (Figure 

39b). 

 
Figure 39:  Interaction of Sorcin with full-length PDCD6 and N-terminus of PDCD6, and 
colocalization of Sorcin with PDCD6 and annexins 7 and 11.  (a) A1-A2. Sensorgrams showing the 
interaction between PDCD6, immobilized on a COOH5 chip and different concentrations of Sorcin 
(left panel; from bottom to top: 200 nM, 400 nM, 800 nM, 1.5 μM, 3 μM, 6 μM), and SCBD (right 
panel; from bottom to top: 50 nM, 100 nM, 200 nM, 500 nM, 1 μM, 2.5 μM, 5 μM), in the presence of 
100 μM calcium.  B1-B2. Sensorgrams showing the interaction between PDCD6, immobilized on a 
COOH5 chip and different concentrations of Sorcin (left panel: from bottom to top: 1.3 μ M, 4 μ M, 12 
μ M), and SCBD (right panel: from bottom to top: 1.25 μ M, 2.5 μ M, 5 μ M, 10 μ M), in the presence 
of 1 mM EDTA. C1-C2. Sensorgrams showing the interaction between the N-terminal domain of 
PDCD6, immobilized on a COOH5 chip and different concentrations of Sorcin (left panel; from bottom 
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to top: 750 nM, 1.5 μM, 3 μM, 6 μM, 12 μM), and SCBD (right panel; from bottom to top: 750 nM, 1.5 
μM, 3 μM, 6 μM, 12 μM), in the presence of 100 μM calcium. D. Scatchard plots of the experiments in 
the panels from A to C, and linear fittings. Red squares: PDCD6-Sorcin interaction in the presence of 
100 μM calcium; red circles: PDCD6-SCBD interaction in the presence of 100 μM calcium; black 
squares: PDCD6-Sorcin interaction in the presence of 1 mM EDTA; black circles: PDCD6-SCBD 
interaction in the presence of 1 mM EDTA; red triangles: N-terminal domain of PDCD6-Sorcin 
interaction in the presence of 100 μM calcium; red crosses: N-terminal domain of PDCD6-SCBD 
interaction in the presence of 100 μM calcium.  
(b) (top) Experiments showing co-localization between Sorcin (rabbit α-Sorcin, green) and PDCD6 
(mouse α-PDCD6, red), in 3T3-L1 preadipocytes in cytokinesis (top panel) and differentiated 3T3-L1 
adipocytes (bottom panel) in X and Z axes. Bars: 10 μm. Note the colocalization in the midbody of 
3T3-L1 preadipocytes and in the perinuclear region of adipocytes. 
(bottom) Experiments showing co-localization between Sorcin (mouse α -Sorcin, green) and annexin11 
(top panel: rabbit α-annexin11, red), or annexin7 (bottom panel: rabbit α-annexin7, red), in 3T3- L1 
preadipocytes in cytokinesis. Bars: 10 μm. Note the colocalization in the midbody (arrows and insets). 
 

Supplementary material 
Appendix 1: Results of next-generation sequencing. The table summarizes the protein name 
(UniProt), the selected peptide sequence and the counts. Peptides with highest counts are highlighted.  

Protein Name Peptide NGS 
count 

Protein phosphatase 1 regulatory subunit 
3G (PPP1R3G)  

YTFTEWRSFLDVPAEL 

255 
Zinc finger protein 622 (ZNF622)  LEFADFYDFRSSYPDH 14 

E3 ubiquitin-protein ligase CBL (CBL)  PRLDLLPQRVCVPSSA 

4 
Hepatic leukemia factor (HLF)  HPGIPSPNCMQSPIRP 4 

Oxysterol-binding protein-related protein 9 
(OSBPL9)  

SSEDEFYDADEFHQSG 2 

RAD51-associated protein 1 (RAD51AP1)  TMNKSPHISNCSVASD 2 

Ankyrin repeat domain-containing protein 6 
(ANKRD6)  

LSSSDCTGSRLRNVKV 2 

Protein FAM92B (FAM92B)  LQSLASQGTLQVQLSR 2 

Glucocorticoid-induced transcript 1 protein 
(GLCCI1)  

MPLSNISVPKSSVSRV 2 

Vang-like protein 2 (VANGL2)  SSRKHRDRRDRHRSKS 2 

cAMP-specific 3',5'-cyclic phosphodiesterase 
4A (PDE4A)  

MLNRELTHLSEMSRSG 2 

http://www.uniprot.org/uniprot/B7ZBB8
http://www.uniprot.org/uniprot/B7ZBB8
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=B7ZBB8&ali_start=227&ali_end=292
http://www.uniprot.org/uniprot/Q969S3
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q969S3&ali_start=316&ali_end=381
http://www.uniprot.org/uniprot/P22681
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=P22681&ali_start=473&ali_end=538
http://www.uniprot.org/uniprot/Q16534
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q16534&ali_start=110&ali_end=175
http://www.uniprot.org/uniprot/Q96SU4
http://www.uniprot.org/uniprot/Q96SU4
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q96SU4&ali_start=265&ali_end=330
http://www.uniprot.org/uniprot/Q96B01
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q96B01&ali_start=110&ali_end=175
http://www.uniprot.org/uniprot/Q9Y2G4
http://www.uniprot.org/uniprot/Q9Y2G4
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9Y2G4&ali_start=553&ali_end=618
http://www.uniprot.org/uniprot/Q6ZTR7
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q6ZTR7&ali_start=220&ali_end=285
http://www.uniprot.org/uniprot/Q86VQ1
http://www.uniprot.org/uniprot/Q86VQ1
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q86VQ1&ali_start=255&ali_end=320
http://www.uniprot.org/uniprot/Q9ULK5
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9ULK5&ali_start=1&ali_end=59
http://www.uniprot.org/uniprot/P27815
http://www.uniprot.org/uniprot/P27815
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=P27815&ali_start=240&ali_end=305
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Tubby-related protein 4 (TULP4)  QPCSSATLNRLTVPRY 2 

Chromodomain-helicase-DNA-binding protein 
9 (CHD9)  

SHPQGNYSNSKLSPVH 2 

Transducin-like enhancer protein 2 (TLE2)  LAAKPAPSTDSVALRS 2 

UPF0602 protein C4orf47 (C4orf47)  RLLKGAPFKLNLHPRD 2 

cAMP-specific 3',5'-cyclic phosphodiesterase 
4D (PDE4D)  

MLNRELTHLSEMSRSG 2 

Translational activator GCN1 (GCN1L1)  QILQILTVQAQLRASP 2 

Metabotropic glutamate receptor 4 (GRM4)  ALATKQTYVTYTNHAI 2 

Signal transducer and activator of transcription 
4 (STAT4)  

VPSVFIPISTIRSDST 2 

Carboxypeptidase Z (CBPZ)  PGQHELMEPEVKLIGN 2 

Ubiquitin carboxyl-terminal hydrolase 48 
(USP48)  

MLVYRLQTQEKPNTTV 2 

Zinc finger and SCAN domain-containing 
protein 5C (ZSCAN5C)  

MAANCTSSWSLGESCN 2 

cAMP-specific 3',5'-cyclic phosphodiesterase 
4B (PDE4B)  

MLNRELTHLSEMSRSG 2 

Hormonally up-regulated neu tumor-associated 
kinase (HUNK)  

RTPRIVKKPEPHQPGP 2 

Nuclear pore-associated protein 1 (NPAP1)  SDSSFILGNPATPAPV 2 

Plakophilin-4 (PKP4)  YSPEQTSLHESEGSLG 2 

Tight junction-associated protein 1 (TJAP1)  GRAWPLPSSSRPQRSP 2 

Rho GTPase-activating protein 20 
(ARHGAP20)  

ALQKRPTTRDSPSASV 2 

Histidine-rich glycoprotein (HRG)  HKHPLKPDNQPFPQSV 2 

Glycylpeptide N-tetradecanoyltransferase 2 
(NMT2)  

MTLQRTMKLYRLPDVT 2 

http://www.uniprot.org/uniprot/Q9NRJ4
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9NRJ4&ali_start=911&ali_end=976
http://www.uniprot.org/uniprot/Q3L8U1
http://www.uniprot.org/uniprot/Q3L8U1
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q3L8U1&ali_start=318&ali_end=383
http://www.uniprot.org/uniprot/Q04725
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q04725&ali_start=301&ali_end=366
http://www.uniprot.org/uniprot/A7E2U8
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=A7E2U8&ali_start=161&ali_end=226
http://www.uniprot.org/uniprot/Q08499
http://www.uniprot.org/uniprot/Q08499
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q08499&ali_start=286&ali_end=351
http://www.uniprot.org/uniprot/Q92616
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q92616&ali_start=980&ali_end=1045
http://www.uniprot.org/uniprot/Q14833
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q14833&ali_start=872&ali_end=937
http://www.uniprot.org/uniprot/Q14765
http://www.uniprot.org/uniprot/Q14765
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q14765&ali_start=669&ali_end=734
http://www.uniprot.org/uniprot/Q66K79
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q66K79&ali_start=206&ali_end=271
http://www.uniprot.org/uniprot/Q86UV5
http://www.uniprot.org/uniprot/Q86UV5
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q86UV5&ali_start=390&ali_end=455
http://www.uniprot.org/uniprot/A6NGD5
http://www.uniprot.org/uniprot/A6NGD5
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=A6NGD5&ali_start=1&ali_end=41
http://www.uniprot.org/uniprot/Q07343
http://www.uniprot.org/uniprot/Q07343
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q07343&ali_start=228&ali_end=293
http://www.uniprot.org/uniprot/P57058
http://www.uniprot.org/uniprot/P57058
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=P57058&ali_start=502&ali_end=567
http://www.uniprot.org/uniprot/Q9NZP6
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9NZP6&ali_start=885&ali_end=950
http://www.uniprot.org/uniprot/Q99569
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q99569&ali_start=101&ali_end=166
http://www.uniprot.org/uniprot/Q5JTD0
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q5JTD0&ali_start=492&ali_end=557
http://www.uniprot.org/uniprot/Q9P2F6
http://www.uniprot.org/uniprot/Q9P2F6
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9P2F6&ali_start=30&ali_end=95
http://www.uniprot.org/uniprot/P04196
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=P04196&ali_start=460&ali_end=525
http://www.uniprot.org/uniprot/O60551
http://www.uniprot.org/uniprot/O60551
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=O60551&ali_start=295&ali_end=360
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Polypeptide N-acetylgalactosaminyltransferase 
16 (GALNT16)  

SEQLREDRTIPLIVTG 2 

Genetic suppressor element 1 (GSE1)  KPVQHPLHPVPTPHHT 2 

Putative centaurin-gamma-like family member 
11P (CTGLF11P)  

STTSPKLNLPPSPHAN 2 

Rho GTPase-activating protein 33 
(ARHGAP33)  

MVARSTDSLDGPGEGS 2 

Serine/threonine-protein kinase SIK2 (SIK2)  SVSTLPASVHPQLSPR 2 

Meckel syndrome type 1 protein (MKS1)  EARESLPQDLVSPSGT 2 

Histone-lysine N-methyltransferase 2C 
(KMT2C)  

LQMNETTANRPSPVRD 2 

Putative testis-specific Y-encoded-like protein 
3 (TSPY26P)  

RWPTETPSRPYGFQSG 2 

Lipopolysaccharide-responsive and beige-like 
anchor protein (LRBA)  

RSSNAKLPSVPTVDSV 2 

Voltage-dependent N-type calcium channel 
subunit alpha-1B (CACNA1B)  

SYVSSLTSQSHPLRRV 2 

Coiled-coil alpha-helical rod protein 1 
(CCHCR1)  

APTWLSDIPLVQPPGH 2 

Protein transport protein Sec24A (SEC24A)  GNTSLTTNHQYVSSGY 2 

Arf-GAP with GTPase, ANK repeat and PH 
domain-containing protein 11 (AGAP11)  

STTSPKLNLPPSPHAN 2 

Synaptotagmin-16 (SYT16)  EQKPKFSRSLLTHGED 2 

Microtubule-associated serine/threonine-
protein kinase 2 (MAST2)  

LSPREQGKTQPPSAPR 2 

Zinc finger and SCAN domain-containing 
protein 5A (ZSCAN5A)  

MAANCTSSWSLGESCN 2 

http://www.uniprot.org/uniprot/Q8N428
http://www.uniprot.org/uniprot/Q8N428
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q8N428&ali_start=22&ali_end=87
http://www.uniprot.org/uniprot/Q14687
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q14687&ali_start=424&ali_end=489
http://www.uniprot.org/uniprot/A8MT82
http://www.uniprot.org/uniprot/A8MT82
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=A8MT82&ali_start=343&ali_end=408
http://www.uniprot.org/uniprot/O14559
http://www.uniprot.org/uniprot/O14559
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=O14559&ali_start=1&ali_end=41
http://www.uniprot.org/uniprot/Q9H0K1
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9H0K1&ali_start=632&ali_end=697
http://www.uniprot.org/uniprot/Q9NXB0
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9NXB0&ali_start=516&ali_end=581
http://www.uniprot.org/uniprot/Q8NEZ4
http://www.uniprot.org/uniprot/Q8NEZ4
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q8NEZ4&ali_start=1911&ali_end=1976
http://www.uniprot.org/uniprot/Q9H489
http://www.uniprot.org/uniprot/Q9H489
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9H489&ali_start=315&ali_end=380
http://www.uniprot.org/uniprot/P50851
http://www.uniprot.org/uniprot/P50851
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=P50851&ali_start=1746&ali_end=1811
http://www.uniprot.org/uniprot/Q00975
http://www.uniprot.org/uniprot/Q00975
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q00975&ali_start=2270&ali_end=2335
http://www.uniprot.org/uniprot/Q8TD31
http://www.uniprot.org/uniprot/Q8TD31
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q8TD31&ali_start=3&ali_end=68
http://www.uniprot.org/uniprot/O95486
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=O95486&ali_start=138&ali_end=203
http://www.uniprot.org/uniprot/Q8TF27
http://www.uniprot.org/uniprot/Q8TF27
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q8TF27&ali_start=206&ali_end=271
http://www.uniprot.org/uniprot/Q17RD7
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q17RD7&ali_start=197&ali_end=262
http://www.uniprot.org/uniprot/Q6P0Q8
http://www.uniprot.org/uniprot/Q6P0Q8
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q6P0Q8&ali_start=1672&ali_end=1737
http://www.uniprot.org/uniprot/Q9BUG6
http://www.uniprot.org/uniprot/Q9BUG6
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9BUG6&ali_start=1&ali_end=41
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Coagulation factor V (F5)  HTVNPNMKEDGILGPI 2 

Glioma tumor suppressor candidate region gene 1 
protein (GLTSCR1)  

YVSSSRSLGLPIAASS 2 

Chitinase-3-like protein 2 (CHI3L2)  GPYPLVQAVKRSLGSL 2 

Protein NPAT (NPAT)  ETTVPFPEESIVPAAK 2 

Guanine nucleotide-binding protein-like 3-like 
protein (GNL3L)  

SNSMVDVCSVDRRSVL 2 

Cell division cycle 5-like protein (CDC5L)  TPRSGTTPKPVINSTP 2 

GTPase Era, mitochondrial (ERAL1)  THCPSPAVKDPNTQSV 2 

Putative uncharacterized protein ENSP00000382790 
()  

MIATVPLRHSIRDRKP 2 

Putative uncharacterized protein NEXN-AS1 
(NEXN-AS1)  

EGSAPTPLTEGSLPTV 2 

Testis-specific chromodomain protein Y 1 (CDY1B)  HTSVPRVKGGQRNITD 2 

Testis-specific chromodomain protein Y 2 (CDY2B)  HTSVPRVKGGQRNITD 2 

Retinal homeobox protein Rx (RAX)  VSSMKLQDSPLLSFSR 1 

Cyclin-D-binding Myb-like transcription factor 1 
(DMTF1)  

NPTLLENKSGSGVPNS 1 

Voltage-dependent calcium channel gamma-8 
subunit (CACNG8)  

SGGSGPSAILRLPSYR 1 

 

  

http://www.uniprot.org/uniprot/P12259
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=P12259&ali_start=382&ali_end=447
http://www.uniprot.org/uniprot/Q9NZM4
http://www.uniprot.org/uniprot/Q9NZM4
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9NZM4&ali_start=1176&ali_end=1241
http://www.uniprot.org/uniprot/Q15782
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q15782&ali_start=350&ali_end=415
http://www.uniprot.org/uniprot/Q14207
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q14207&ali_start=1017&ali_end=1082
http://www.uniprot.org/uniprot/Q9NVN8
http://www.uniprot.org/uniprot/Q9NVN8
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9NVN8&ali_start=486&ali_end=551
http://www.uniprot.org/uniprot/Q99459
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q99459&ali_start=399&ali_end=464
http://www.uniprot.org/uniprot/O75616
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=O75616&ali_start=251&ali_end=316
http://www.uniprot.org/uniprot/A8MVM7
http://www.uniprot.org/uniprot/A8MVM7
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=A8MVM7&ali_start=1&ali_end=59
http://www.uniprot.org/uniprot/Q8NBZ9
http://www.uniprot.org/uniprot/Q8NBZ9
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q8NBZ9&ali_start=30&ali_end=95
http://www.uniprot.org/uniprot/Q9Y6F8
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9Y6F8&ali_start=219&ali_end=284
http://www.uniprot.org/uniprot/Q9Y6F7
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9Y6F7&ali_start=220&ali_end=285
http://www.uniprot.org/uniprot/Q9Y2V3
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9Y2V3&ali_start=174&ali_end=239
http://www.uniprot.org/uniprot/Q9Y222
http://www.uniprot.org/uniprot/Q9Y222
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q9Y222&ali_start=391&ali_end=456
http://www.uniprot.org/uniprot/Q8WXS5
http://www.uniprot.org/uniprot/Q8WXS5
http://slim.ucd.ie/proviz/proviz.php?uniprot_acc=Q8WXS5&ali_start=227&ali_end=292
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Appendix 2: GO TERM biological function (PepTool and DAVID). List of the GO TERM 
functions of the selected dataset. Here are reported the functions in the ranges of p-values reported in 
brackets; the underlined entries match with known Sorcin biological function.  
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Appendix 3: Ensembl (placental mammalian), PepTool (metazoan) sequence alignment, ConSurf 
representation of Ensembl sequence alignment. A: Ensembl the residues conserved throughout the 
alignment are highlighted in a square vs. Homo sapiens sequence (in red), while in yellow are 
highlighted the original residues from the original peptide sequence. B: Peptool gives a value from 
0=conserved to 1=not conserved; the applied threshold is 0.5. C: Consurf MSA representation gives 
information on conservation, buried/exposed, functionally/structurally relevant residues. 
 
A: Ensembl 
 
PP13G (YTFTEWRSFLDVPAEL) 
ENSLACP00000016420_Lcha/1-231  YTFNNWLSFIDTPARY 
ENSXETP00000064016_Xtro/1-224  YSFNDWLSHLDCPATA 
ENSLAFP00000020731_Lafr/1-282  YTFTEWRSFLDVPAEL 
ENSDNOP00000018831_Dnov/1-356  YTFTEWRSFLDVPAEL 
ENSSTOP00000016173_Itri/1-324  YTFTEWRTFLDVPAEL 
ENSRNOP00000064180_Rnor/1-347  YTFTEWRTFLDVPAEL 
ENSMUSP00000122712_Mmus/1-347  YTFTEWRTFLDVPAEL 
ENSOGAP00000020989_Ogar/1-342  YTFTEWRSFLDVPAEL 
ENSMMUP00000025235_Mmul/1-283  YTFTEWRSFLDVPAEL 
ENSNLEP00000022740_Nleu/1-358  YTFTEWRSFLDVPAEL 
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ENSGGOP00000025034_Ggor/1-358  YTFTEWRSFLDVPAEL 
ENSP00000393832_Hsap/1-358     YTFTEWRSFLDVPAEL 
ENSPTRP00000060169_Ptro/1-358  YTFTEWRSFLDVPAEL 
ENSCSAP00000018620_Csab/1-354  YTFTEWRSFLDVPAEL 
ENSCJAP00000039772_Cjac/1-287  YTFTEWRSFLDVPAEL 
ENSAMEP00000018108_Amel/1-249  YTFTEWRSFLDVPAEL 
ENSMLUP00000020255_Mluc/1-314  YTFTDWRSFLDVPAEL 
ENSSSCP00000001065_Sscr/1-353  YTFTEWRSFLDVPAEL 
ENSBTAP00000055612_Btau/1-344  YTFTEWRSFLDVPAEL 
ENSONIP00000026205_Onil/1-268  YTFNEWLSHVDAQAVP 
ENSONIP00000026204_Onil/1-232  YTFNDWLSHMDAQAVP 
ENSPFOP00000024310_Pfor/1-207  LTYNDWLSYVDAQAVP 
ENSLOCP00000014321_Locu/1-236  YTFNDWLSFVDAQAVA 
ENSAMXP00000026840_Amex/1-253  YTLDEWQSYVDARAEP 
ENSDARP00000132511_Drer/1-249  YTFNDWLSFVDAQAIP 
ENSDARP00000118761_Drer/1-285  YSFTNWKSCSETKAYW 
ENSAMXP00000002759_Amex/1-288  YSFTNWKSCSETKANW 
ENSTRUP00000034907_Trub/1-250  YSFTDWKSCTETKASW 
ENSTNIP00000000313_Tnig/1-288  FSFTGWKSCTEAKATW 
ENSONIP00000026130_Onil/1-267  YSFTGWKSCAEAKASW 
ENSXMAP00000019665_Xmac/1-270  YSFTEWKGSAETKASW 
ENSPFOP00000007964_Pfor/1-342  YSFTEWKSSAETKASW 
ENSGMOP00000015353_Gmor/1-244  YSFTEWKSHTETKASW 
ENSONIP00000025510_Onil/1-243  YSFTNWRTHTNTAASW 
ENSPFOP00000001814_Pfor/1-276  YSFTNWRTQTHTSALW 
ENSXMAP00000020215_Xmac/1-262  YSFTNWRTQTHTTALW 
ENSTRUP00000001837_Trub/1-183  YSFTSWHTRTETTASW 
ENSAMXP00000026506_Amex/1-290  YSFTDWKSSAESKACW 
ENSDARP00000129035_Drer/1-297  YSFTDWRSSADCRAGW 
ENSLOCP00000022460_Locu/1-268  YSFTGWKSSADTKACW    
 
NU214 (LVPERETLFNTLANNR) 
ENSPTRP00000036762_Ptro/1-1459 LVPERETLFNTLANNR 
ENSDORP00000003407_Dord/1-2078 LVPERETLFNTLANNR 
ENSPANP00000018828_Panu/1-2065 LVPERETLFNTLANNR 
ENSETEP00000008306_Etel/1-2026 LVPERETLFNTLANNR 
ENSP00000352400_Hsap/1-2090    LVPERETLFNTLANNR 
ENSCPOP00000002829_Cpor/1-2076 LVPERETLFNTLANNR 
ENSTTRP00000003698_Ttru/1-2060 FVPERETLFNTLANNR 
ENSTBEP00000004467_Tbel/1-2048 LVPERETLFNTLANNR 
ENSMLUP00000004455_Mluc/1-2066 LVPERETLFNTLANNR 
ENSRNOP00000033579_Rnor/1-1790 VPERETLFNTLANNRE 
ENSOGAP00000015017_Ogar/1-1664 LVPERETLFNTLANNR 
ENSLAFP00000000676_Lafr/1-1539 LVPERETLFNTLANNR 
ENSECAP00000020305_Ecab/1-2001 LVPERETLFNTLANNR 
ENSSARP00000002707_Sara/1-1913 LEPERETLFNTLANNR 
ENSDNOP00000013137_Dnov/1-2100 LVPERETLFNTLANNR 
ENSNLEP00000015422_Nleu/1-2090 LVPERETLFNTLANNR 
ENSCSAP00000010932_Csab/1-2090 LVPERETLFNTLANNR 
ENSAMEP00000017256_Amel/1-2085 LVPERETLFNTLANNR 
ENSCHOP00000000346_Chof/1-1818 LVPERETLFNTLANNR 
ENSOCUP00000000870_Ocun/1-2094 LVPERETLFNTLANNR 
ENSBTAP00000029190_Btau/1-2074 LVPERETLFNTLANNR 
ENSOPRP00000006059_Opri/1-2046 LVPERETLFNTLANNR 
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ENSTSYP00000012096_Tsyr/1-2067 LVPERETLFNTLANNR 
ENSOARP00000007571_Oari/1-2084 LVPERETLFNTLANNR 
ENSPVAP00000004008_Pvam/1-2090 LVPERETLFNTLANNR 
ENSSTOP00000010451_Itri/1-2089 LVPERETLFNTLANNR 
ENSCJAP00000015766_Cjac/1-2091 LVPERETLFNTLANNR 
ENSPPYP00000022085_Pabe/1-2047 LVPERETLFNTLANNR 
ENSGGOP00000016757_Ggor/1-2069 LVPERETLFNTLANNR 
ENSEEUP00000000411_Eeur/1-2063 LVPERETLFNTLANNR 
ENSMPUP00000012511_Mpfu/1-2030 LVPERETLFNTLANNR 
ENSMMUP00000028616_Mmul/1-2095 LVPERETLFNTLANNR 
ENSPCAP00000008977_Pcap/1-2086 LVPERETLFNTLANNR 
ENSCAFP00000029512_Cfam/1-2087 LVPERETLFNTLANNR 
ENSMUSP00000066492_Mmus/1-2085 IVPERETLFNTLANNR 
ENSSSCP00000006118_Sscr/1-2081 LVPERETLFNTLANNR 
 
CAC1B(SYVSSLTSQSHPLRRV) 
ENSTTRP00000013136_Ttru/1-2178 SYVSSLTSQSHPLRRV 
ENSFCAP00000001128_Fcat/1-2234 SYVSSLTSQSHPLRRV 
ENSDORP00000010890_Dord/1-2202 SYVSSLTSQPHPLRRV 
ENSBTAP00000045932_Btau/1-2331 SYVSSLTSQSHPLRRV 
ENSCSAP00000012914_Csab/1-2342 SYVSSLTSQSHPLRRV 
ENSPANP00000017445_Panu/1-2321 SYVSSLTSQSHPLRRV 
ENSCPOP00000004005_Cpor/1-2320 SYVSSLTSQSHPLRRV 
ENSGGOP00000004729_Ggor/1-2207 SYVSSLTSQSHPLRRV 
ENSECAP00000010392_Ecab/1-2226 SYVSSLTSQSHPLRRV 
ENSOGAP00000014671_Ogar/1-2336 SYVSSLTSQSHPLRRV 
ENSSTOP00000004189_Itri/1-2342 SYVSSLTSQSHPLRRV 
ENSLAFP00000029481_Lafr/1-2356 SYVSSMTSQPHPLRRV 
ENSPTRP00000037005_Ptro/1-1888 SYVSSLTSQSHPLRRV 
ENSOANP00000018803_Oana/1-2339 SYVSSLTSQPHHGLRV 
ENSRNOP00000006162_Rnor/1-2349 SYVSSLTSQSHPLRRV 
ENSOARP00000000384_Oari/1-1489 SYVSSLTSQSHPLRRV 
ENSEEUP00000005237_Eeur/1-2206 SYVSSLTSQSHPLRRV 
ENSMMUP00000040300_Mmul/1-2241 SYVSSLTSQSHPLRRV 
ENSPPYP00000022242_Pabe/1-2119 SYVSSLTSQSHPLRRV 
ENSMICP00000015302_Mmur/1-2241 SYVSSLTSQSHPLRRV 
ENSMUSP00000037416_Mmus/1-2327 SYVSSLTSQSHPLRRV 
ENSPVAP00000011230_Pvam/1-2300 SYVSSLTSQPHPPRRV 
ENSOPRP00000006610_Opri/1-2230 SYVSSLTSQSHPLRRV 
ENSCJAP00000024932_Cjac/1-2345 SYVSSLTSQSHPLRRV 
ENSCAFP00000028638_Cfam/1-2334 SYVSSLTSQSHPLRRV 
ENSMPUP00000015171_Mpfu/1-1971 SYVSSLTSQSHPLRRV 
ENSP00000360423_Hsap/1-2339    SYVSSLTSQSHPLRRV 
 
CEP97 (LIPEHSSPVQDAQISQ) 
ENSMMUP00000008609_Mmul/1-865 LIPEHSSPVQD 
ENSSARP00000007832_Sara/1-861 LVPENSSPVQD 
ENSOARP00000019969_Oari/1-858 FVPEHSSPIQD 
ENSCSAP00000002556_Csab/1-806 LIPEHSSPVQD 
ENSGGOP00000025605_Ggor/1-889 LIPEHSSPVQD 
ENSOPRP00000003934_Opri/1-859 PVPERASPVQD 
ENSSTOP00000001559_Itri/1-858 LVPEHSSPVQD 
ENSMLUP00000010896_Mluc/1-832 --PEHSSPLQD 
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ENSP00000342510_Hsap/1-865    LIPEHSSPVQD 
ENSCJAP00000000842_Cjac/1-887 LIPEHSSPVQD 
ENSPANP00000015263_Panu/1-865 LIPEHSSPVQD 
ENSFCAP00000003065_Fcat/1-860 LVPEHSSPVQD 
ENSCPOP00000019666_Cpor/1-832 LVPEHSSPVQD 
ENSOCUP00000009829_Ocun/1-859 LVPEHSSPVQD 
ENSDORP00000007874_Dord/1-736 LSPEHSSPVQD 
ENSCAFP00000014136_Cfam/1-852 LVPEHSSPVQD 
ENSNLEP00000004001_Nleu/1-860 LIPEHSSPVQD 
ENSLAFP00000013030_Lafr/1-857 LVPEHSSPVQD 
ENSETEP00000002560_Etel/1-854 QVSGHSSPVHD 
ENSAMEP00000003933_Amel/1-860 LVPEHSSPVQD 
ENSTBEP00000005566_Tbel/1-829 ----GSSVISD 
ENSDNOP00000017282_Dnov/1-861 LLSERSSPVQD 
ENSRNOP00000002191_Rnor/1-845 RTPECSSPVQD 
ENSPCAP00000004030_Pcap/1-858 LVPVHSSPVQD 
ENSSSCP00000012730_Sscr/1-491 LVPEHSSPVQD 
ENSOGAP00000009065_Ogar/1-887 LIPEHSSPIQD 
ENSPPYP00000015191_Pabe/1-865 LIPEHSSPVQD 
ENSMUSP00000023270_Mmus/1-856 RTPECSSPGQD 
ENSBTAP00000017907_Btau/1-858 LVPEHSSPIQD 
ENSECAP00000019751_Ecab/1-860 LVPEHSSPVQD 
ENSPTRP00000051190_Ptro/1-891 LIPEHSSPVQD 
ENSMPUP00000011668_Mpfu/1-857 LVPEHSSPVQD                                                                                                                                                                    
 
SYT16(EQKPKFSRSLLTHGED) 
ENSFCAP00000007180_Fcat/1-645 EQKSKFSHLLSTHEED 
ENSNLEP00000017035_Nleu/1-645 EQKPKFSRSLLTHGED 
ENSAMEP00000004497_Amel/1-471 EQKSKYSHLLSTHEED 
ENSMMUP00000011488_Mmul/1-645 EQKPKFSRLLLTHGED 
ENSRNOP00000073667_Rnor/1-644 EQKTKCKHFLCTHQED 
ENSMLUP00000015913_Mluc/1-647 EQKPKVCHLLSTGEED 
ENSETEP00000007584_Etel/1-624 EQKPKFSRVLANQEED 
ENSP00000478637_Hsap/1-645    EQKPKFSRSLLTHGED 
ENSCHOP00000011846_Chof/1-497 EKKPKFSHLLSNYEED 
ENSEEUP00000011316_Eeur/1-635 DQKPKFSYLPSNHEED 
ENSOARP00000022721_Oari/1-643 EHKPKPSHCLSTHKED 
ENSECAP00000022075_Ecab/1-648 EQKPKFSCLLSIHEED 
ENSDNOP00000014970_Dnov/1-648 EQKPKFSHLLSNHEEE 
ENSVPAP00000002217_Vpac/1-531 EQKRKPSHWLPTHKED 
ENSDORP00000015237_Dord/1-622 NQKLKCSRLLSSHEED 
ENSGGOP00000015716_Ggor/1-645 EQKPKFSRSLLTHGED 
ENSMUSP00000106081_Mmus/1-549 EQKIKCKRLLCTHQED 
ENSCAFP00000039622_Cfam/1-629 EQKSKFSRLLSTCEED 
ENSOGAP00000014961_Ogar/1-471 EQKPKLGSELIIHCQA 
ENSPTRP00000010890_Ptro/1-645 EQKPKFSRSLLTHGED 
ENSSARP00000009906_Sara/1-544 ERKPKFNQ-FSAHEED 
ENSCJAP00000051609_Cjac/1-645 EQKPKFSRLLSMHEED 
ENSPVAP00000015109_Pvam/1-625 EQNPKFCRLLSTGRED 
ENSSSCP00000005479_Sscr/1-471 EQKPKARRWLSTHKED 
ENSOCUP00000014494_Ocun/1-649 ERKQKFHHLPSNREED 
ENSLAFP00000016475_Lafr/1-631 EQKLKFSCLLSSQEEE 
ENSPPYP00000006689_Pabe/1-561 EQKPKFSRSLLTHGED 
ENSSTOP00000003494_Itri/1-644 EQKPKCGRLLPTHEED 
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ENSMPUP00000006496_Mpfu/1-645 EQKSKLSHLLSTHEEE 
ENSCSAP00000010169_Csab/1-650 EQKPKFSRLLLTHGED 
ENSOPRP00000004346_Opri/1-618 EQRPTSSNFLSTHEEG 
ENSMICP00000010429_Mmur/1-637 EQKLKFSRLLSTCEED 
ENSPANP00000017068_Panu/1-585 EQKPKFSRLLLTHGED 
ENSTSYP00000000756_Tsyr/1-580 EQKQKFSRLLSTHKED 
ENSTTRP00000013264_Ttru/1-624 EHKPKPSRWLSTHEEA 

ENSBTAP00000025211_Btau/1-641 EHKPKPSHCLSTHKED 

 

B: Peptool 
 

Protein name Peptide sequence PepTool value of conservation 

Protein phosphatase 1 regulatory 
subunit 3G (PPP1R3G) 

YTFTEWRSFLDVPAEL 0.22  

Zinc finger protein 622 (ZNF622) LEFADFYDFRSSYPDH 0.23  

Rho GTPase-activating protein 
33 (ARHGAP33) 

MVARSTDSLDGPGEGS 0.3 (A.D) 

RAD51-associated protein 1 
(RAD51AP1) 

TMNKSPHISNCSVASD 0.31 (HCS) 

Oxysterol-binding protein-related 
protein 9 (OSBPL9) 

SSEDEFYDADEFHQSG 0.34 (S.D) 

Chromodomain-helicase-DNA-
binding protein 9 (CHD9) 

SHPQGNYSNSKLSPVH 0.35 (Q.S) 

Glucocorticoid-induced transcript 
1 protein (GLCCI1) 

MPLSNISVPKSSVSRV 0.37  

Spermatogenesis-associated 
protein 31A4 (SPATA31A4) 

LTSILPENFPVSPELR 0.42  

Spermatogenesis-associated 
protein 31A7 (SPATA31A7) 

LTSILPENFPVSPELR 0.42  

Ankyrin repeat domain-containing 
protein 6 (ANKRD6) 

LSSSDCTGSRLRNVKV 0.44 (R) 

Glycylpeptide N-
tetradecanoyltransferase 2 

(NMT2) 

MTLQRTMKLYRLPDVT 0.45  

Spermatogenesis-associated 
protein 31A6 (SPATA31A6) 

LTSILPENFPVSPELR 0.45  

Spermatogenesis-associated 
protein 31A2 (SPATA31A2) 

LTSILPENFPVSPELR 0.45  
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Spermatogenesis-associated 
protein 31A3 (SPATA31A3) 

LTSILPENFPVSPELR 0.45  

Spermatogenesis-associated 
protein 31A5 (SPATA31A5) 

LTSILPENFPVSPELR 0.45  

Spermatogenesis-associated 
protein 31A1 (SPATA31A1) 

LTSILPENFPVSPELR 0.45  

 

 
C: Consurf 
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4. Discussion 
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Sorcin is a cellular sensor for calcium, able to manage the intracellular 

concentration of the cation, while regulating other proteins (RyRs, SERCA, 

NCX) and helping to maintain calcium load in intracellular stores. 

The ion binding provokes a consistent rearrangement in the SCBD, leading to 

the exposure of two hydrophobic binding pockets between EF1 and EF3, the 

EF hand motifs involved in ion coordination. These pockets, once accessible 

to the solvent, can be engaged in the interaction with different targets, 

including the N-terminal portion of the protein itself. Indeed the binding 

affinity of the whole protein towards PDCD6 (ALG-2) decreases in presence 

of EDTA. 

Furthermore, Sorcin is able to bind directly to chemotherapeutic drugs as 

doxorubicin, vinblastine, paclitaxel, cisplatin and retinoic acid. Particularly, it 

is able to bind doxorubicin using two binding sites (KD1 nM range; KD2 low 

PM range), both in presence and absence of calcium. One of these two 

binding sites has been enlightened in the X-ray crystal structure: specifically, 

doxorubicin can bind between EF4 and EF5, the EF hand motifs involved in 

the homodimerization of the protein, and the other putative site results to be 

close to the D-helix. 

Sorcin acts as a buffer for doxorubicin, hampering its intake in the nucleus of 

cancer cells, where doxorubicin acts by intercalating DNA and exerting 

topological constrain that blocks replication (Yang F et al., 2014). Indeed 

Sorcin changes localization upon doxorubicin treatment, acquiring a diffuse 

pattern in the cell. On the other hand upon retinoic acid treatment in APL cell 

line Sorcin migrates towards the insoluble portion of the cell, ER and nucleus 

mainly. 
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As a matter of fact different types of cancer cells, expressing diverse basal 

level of Sorcin protein, can be more or less sensitive to drug treatment. 

Hence, cells expressing high level of Sorcin resulted to be more resistant 

towards doxorubicin rather than cells expressing less Sorcin. 

Sorcin-direct silencing in cancer cells with high levels of the protein, as 

H1299, results in an increase of cell death rate and cell growth arrest, an 

increase of doxorubicin intake in the nucleus and, as a late response, to the 

cleavage of PARP, that leads to the activation of apoptosis. 

Additionally, Sorcin resides in the same amplicon of ABCB1 gene (MDR1), 

located in 7q21.1 chromosomal portion. MDR1 is known to be involved in 

extrusion of xenobiotics from the cells, and overexpressed in cancer cell lines 

with a chemoresistant phenotype. It has been demonstrated that Sorcin 

silencing reduces MDR1 protein level and increases drug efflux from the cell. 

However the mechanism that relates MDR1 and Sorcin in MDR phenotype 

arising remains still not fully understood. Possibly other genes in the 

amplicon (see Chapter 1.3.1, Figure 9) might collaborate to the resistance 

process, since many of them resulted to be over expressed or silenced 

whether assuming oncosuppressor functions, as lncRNA TP53TG1 (Diaz-

Lagares et al., 2016). Indeed, the amplification of chromosome 7q21 region 

in neuroblastoma cancer cell lines (Flahaut et al., 2006), as well as the 

increased copy number of 7q21.12 region (including ABCB1 gene) in lung 

cancer cells (Kitada and Yamasaki, 2007) and in leukemia cells (Kadioglu 

and Efferth, 2016) corresponds to drug resistance, suggesting the possible 

participation of other genes in the development of MDR phenotype. 
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Genomic instability and chromosomal rearrangements often affect cancer 

cells, resulting in genomic amplification, frequently translated in an increased 

copy number of ABCB1 gene that can lead to the activation of MDR1 (Chen 

et al., 2002; Duesberg et al., 2007; Katoh et al., 2005; Kim et al., 2015; 

Mickley et al., 1997; Pang et al., 2005). Those rearrangements may either 

occur in upstream regions far from ABCB1 promoter or may affect genomic 

alteration along 7q chromosomal arm that can associate with ABCB1 

activation (Chen et al., 2002; Knutsen et al., 1998).  

Genomic investigations on ABCB1 amplicon have been made, in order to 

understand whether the surrounding genes might have some role in the 

development of MDR phenotype or if they were amplified or suppressed in 

resistance-induced cancer cell lines. ABCB1 gene expression can be increased 

up to 1092 fold in lung cancer cell with acquired paclitaxel resistance, 

showing a surprising discrepancy between the gene copy number and the 

expression level. Along with ABCB1 gene expression enhancement, within 

the same amplicon (7q21.12), there is a concomitant amplification of 

RUNDC3B and ADAM22 with an increased fold change of 38.5 and 27.7 

respectively (Yabuki et al., 2007).  

Taxane induced-resistant ovarian cancer cell lines showed a regional 

activation on chromosome 7q21.11-13 of about 22 co-expressed genes over 

an area of 8Mb, surrounding ABCB1 gene. These genes include SRI (Sorcin), 

MGC4175 (TMEM243), DMTF1, CROT, ABCB1, ABCB4, ADAM22, 

RUNDC3B, DBF4 and the regional activation was driven by gene copy 

number alterations (Wang et al., 2006). Another research on taxane-resistant 

breast cancer cell lines reported gains in gene copy number on chromosome 

7, specifically concerning ABC transporters (ABCB1, ABCB4), SRI, DMTF1, 
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SLC25A40 and CROT, all belonging to the ABCB1 amplicon (Hansen et al., 

2016). Furthermore, a whole-genome characterization study on 

chemoresistant ovarian cancer cells reported an intergenic deletion between 

ABCB1 and SLC25A40 genes, that results in the creation of a fused transcript, 

with no evidence of this event in drug-sensitive samples. Additional 

transcriptome investigations showed the increase of ABCB1-SLC25A40 

fused transcript in resistant samples and the decrease of SLC25A40 in 

sensitive specimen (Patch et al., 2015). 

However, the genomic rearrangements and the high copy number cannot 

explain by themselves the unbelievably high fold increase in gene expression, 

suggesting that other mechanisms as such transcriptional enhancement, 

mRNA stabilization, post-transcriptional regulation and epigenetic 

modifications may contribute to these altered expressions. Interestingly also 

non-coding RNAs as miRNAs and long non-coding RNAs (lncRNA) may 

exert post-transcriptional regulatory functions in cancer cells, giving rise to 

metastatic or drug-resistant phenotypes. Indeed in the ABCB1 amplicon a 

lncRNA (TP53TG1) resides, reported to be down-regulated in A549 cisplatin 

resistant lung cancer cells (Yang et al., 2013). On the other hand, deletions in 

the ABCB1 locus in breast cancer patients determine a 2-8 times decreased 

expression of these MDR-related genes; patients with these deletions have a 

better response to neoadjuvant chemotherapy (Litviakov et al., 2016). 

Overall, experimental evidences report an amplification of chromosome 

7q21.12 region that can contribute with different extent to multidrug resistant 

phenotype development , as reviewed by Genovese and collaborators 

(Genovese I at al. 2017, see pag 166). 



113 
 

Although Sorcin acts as a cellular sensor able to interact and regulate diverse 

binding partners, once activated by calcium binding, its network of 

interaction has still to be unraveled. 

Combinatorial and Proteomic peptide phage display selection performed on 

Sorcin enabled us to better understand the preferred binding motifs and 

possibly disclose novel molecular partners.  

Combinatorial peptide phage display revealed a binding preference to two 

short motifs one hydrophobic and one hydrophobic/acidic, in line with the 

structural evidence of  the N terminal peptide binding to the D-helix and with 

the motifs enrichment found in the ProP-PD selection. 

Proteomic peptide library was designed on intrinsically disordered regions of 

the human proteome, which are poorly complex in terms of structure and 

aminoacidic sequence, mainly composed by acidic and hydrophobic residues. 

This low complexity enables these regions to be involved in transient, but 

biologically relevant, protein-protein interactions especially through short 

linear motifs (SLiMs), 3 to 10 aminoacidic stretches that take part in the 

binding event. 

These transient interactions are generally difficult to characterize, even 

though the phage display selection process combined with a bioinformatics 

pipeline and in vitro binding assays eventually helped to find a novel binding 

partner of Sorcin. 

CEP97, validated as an interactor of Sorcin, is a centriolar protein that 

recruits CCP110 collaborating to the negative control of ciliogenesis at the 

mother centriol. Lalioti VS and collaborators reported in 2014 the change in 
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Sorcin localization throughout the cell cycle. This may suggest a possible 

transient interaction between Sorcin and CEP97 at the end of cytokinesis 

translated in a negative regulation of microtubules formation. 

To broaden our current knowledge about Sorcin activation, molecular 

mechanism of MDR phenotype regulation and network of transient 

interactions, further investigations are essential to address these topics in 

order to gain information about this multifaceted oncoprotein. 
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Sorcin acts as a regulator of different processes in cells, ranging from 

cytokinesis, to relaxation of cardiomyocytes after excitation-contraction, and 

to MDR phenotype in cancer cells. Sorcin is able to bind and regulate 

different molecular partners, and can be regulated by them. As a matter of 

fact Sorcin can interact with kinases (Lalioti VS et al. 2014), ion channels, 

pumps and exchangers (RyRs, SERCA, NCX), other calcium sensors 

(PDCD6), and can bind small molecules, as chemotherapeutic drugs. 

In this work we aimed to shed light on: 

- calcium induced activation of Sorcin, by structural and functional studies,  

- the molecular mechanism by which Sorcin regulates the resistance towards 

chemotherapeutic drugs in cancer cells, 

- the SLiMs-based network of interactions in presence of calcium. 

Despite the achievements in the characterization of the protein, the processes 

where it is involved and its network of interaction, the complete landscape of 

Sorcin function(s) has still not completely unveiled. 

For these reasons, we aim to extend our knowledge on: 

i) the characterization of the transient and biologically relevant 

interactions of the whole proteins of the peptides selected by 

ProP-PD with Sorcin by SPR, protein co-ImmunoPrecipitation 

(co-IP) and/or confocal microscopy,  

ii) the binding sites where those protein-protein interactions take 

place, by X-ray crystallography/NMR or mutagenesis 

investigation; 
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iii) the position of the second doxorubicin-binding site of Sorcin, 

probably at the D-helix, by X-ray crystallography, followed by the 

in vitro binding assays with mutants, in order to characterize the 

highest affinity and the lowest affinity sites; 

iv) the mechanism of ABCB1-Sorcin amplicon activation during 

MDR and characterization of specific transcriptional factors 

through Chromatin ImmunoPrecipitation (Ch-IP); 

v) the significance of Sorcin migration to insoluble fractions upon 

retinoic acid treatment in APL cells, beside the functional 

characterization of the role of Sorcin in APL models 

differentiation upon retinoic acid treatment 

Overall, in the extended mosaic and complexity of biological processes, 

either physiological or pathological, Sorcin results to be an intriguing and 

fascinating sensor protein that takes part in important processes in cells. 

Sorcin is an important protein for cell survival and, for the 

aforementioned reasons, can be considered as an oncoprotein, and a 

marker of MDR and of poor prognosis in tumors. Sorcin may therefore 

represent a potential target for cancer therapy purposes: a further future 

goal of our research may be the discovery of molecules able to impair 

Sorcin interactions with its molecular targets involved in tumorigenesis 

and in the establishment of the MDR phenotype. 
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6. Materials and methods  
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6.1 Cell cultures and western blots 

H1299, Calu-1, A459 human lung carcinoma, HeLa human cervix 

adenocarcinoma, MDA-MB-468 and MDA-MB-231 breast adenocarcinoma 

cell lines were cultured in DMEM medium (Invitrogen-GIBCO) with 10% 

FBS (v/v) and 5% Penicillin/Streptomycin (v/v) at 37°C in a balanced air 

humidified incubator with 5% CO2, while NB4 human Acute Promyelocytic 

Leukemia (APL) cell lines were cultured in RPMI 1640 with 10% FBS (v/v) 

and 5% Penicillin/Streptomycin (v/v) in the same growth condition. 

The cells were lysed in a 2% SDS lysis buffer (25 mM Tris-HCl at pH 7.5, 

100 mM NaCl, 3 mM EDTA, 7% glycerol) with: NaF 1000X, NaVO3 100X, 

Na4PO7 20X, Aprotinin 1000X, Leupeptin 1000X, PMSF 100X protease and 

phosphatase inhibitors as final concentrations in order to get a lysate that 

includes all the proteins of the cell. Then for the nucleus/cytosol fractionation 

purpose the cells were first lysed in a 1% NP-40 lysis buffer (50 mM Tris-

HCl pH 8, 150 mM NaCl) and subsequently in the abovementioned SDS 

lysis buffer. 

Extracts of SDS lysed cells were sonicated for 10 s and centrifuged at 12000 

rpm for 10 min to remove cell debris. Lysates were quantified in proteins 

content with PierceTM BCA protein assay kit (Thermo Scientific) according 

to manufacturer’s instructions.  

13% acrylamide-bisacrylamide SDS gel electrophoresis (SDS-PAGE) were 

run for Sorcin, and 7% SDS-PAGE were run for PARP and MDR1. Proteins 

lysate content was checked by S-Ponceau staining. Western blotting analysis 

was performed with the following antibodies: rabbit polyclonal anti-human 

Sorcin (home-made), mouse monoclonal anti-PARP (Cell Signalling #9532), 
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mouse monoclonal anti-MDR1 (SantaCruz Biotechnologies, sc-13131) 

mouse monoclonal anti-tubulin (Sigma-Aldrich cat. T5168) and mouse 

monoclonal anti-E�actin (SantaCruz Biotechnologies, sc-81178). Goat 

secondary anti-mouse and anti-rabbit antibodies conjugated to horseradish 

peroxidase were used (BioRad cat. 170-6515, 170-6516). Immunostained 

bands were detected by chemiluminescence (Chemidoc, BioRad), and the 

intensity quantified with the tool of the Chemidoc software. 

Mouse 3T3-L1 preadipocyes (ATCCR CL-173TM, American Type Culture 

Collection) and 3T3-L1 adipocytes were grown on plastic dishes or 10-mm 

glass coverslips using Dulbecco’s modified Eagle’s medium supplemented 

with 10% calf serum, 4 mM glutamine, 50 mg/l streptomycin, 100 IU/l 

penicillin and non-essential amino acids at 37 °C in a humidified CO2 

incubator. 3T3-L1 preadipocytes were differentiated into adipocytes as 

described by Tafuri, adding 7.5 μM troglitazone in the medium on days 3 and 

4 of differentiation (Tafuri SR et al. 1996). 

The mouse α-Sorcin (33–800) was from Zymed, the rabbit α -Sorcin was 

homemade, the rabbit α-annexin 11 (NB100–78588) was from Novus 

Biologicals, the rabbit α-annexin 7 (ABIN65268) and the mouse α-PDCD6 

(H00010016-M01) were from Abnova. 

6.2 Retinoic Acid, Doxorubicin treatment and silencing for Sorcin 

NB4 cell line were treated in a time course experiment for 24, 48, 72, 96 

hours with 1.0 µM Retinoic Acid (RA) final concentration used in clinical 

treatment of APL patients, in order to evaluate the differentiation, Sorcin 

relocalization and expression. 
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We performed a dose-response curve (0.1 µM, 0.3 µM, 0.6 µM, 1.0 µM); 0.6 

µM doxorubicin is the dose resulting in the best evaluation of time-dependent 

accumulation, and  is compatible with doxorubicin plasma concentration 15’-

2h after treatment of many different types of cancer (Kontny et al. 2013). 0.6 

µM doxorubicin concentration was used for most experiments. H1299 cells 

were transfected with a solution composed by Optimem medium (Invitrogen-

GIBCO), Lipofectamine RNAimax (Invitrogen cat.13778-030) and a final 

concentration of 500 pM siRNA for Sorcin (CDS3 and 3’UTR) (IDT 

sequence to CDS3-exon3: GAUAGAUGCUGAUGAAUUGCAGAGA; 

sequence to 3’UTR-exon8: AGCUGUACACUUUCAAGUAAGAUCT), 

according to manufacturer’s instructions. CDS3 siRNA silences both Sorcin 

isoforms (Landriscina et al. 2010). After 48 hours of transfection, the 

medium was replaced with fresh DMEM (Invitrogen-GIBCO) containing 0.6 

μM doxorubicin. To evaluate doxorubicin incorporation, cells were treated 

with the drug in time-course experiments (30 minutes to 3 hours incubation 

for cytofluorimetry, 3 hours and 5 hours for confocal microscopy). The 

analysis of biological effects of Sorcin silencing was performed 24 hours and 

48 hours after treatment. 

6.3 Doxorubicin uptake (confocal microscopy and FACS) 

The uptake of doxorubicin was evaluated through confocal microscopy and 

FACS (Fluorescent-associated Cell Sorting) thanks to the autofluorescence of 

the molecule (excitation wavelength 470 nm; emission wavelength 585 nm). 

To avoid cells drug saturation the analysis was performed between 30 

minutes and 5 hours incubation. 
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For confocal microscopy, the medium was removed from the H1299 cell line, 

then washed with PBS. The cells were fixed in 2% paraformaldehyde for 10 

minutes, washed in PBS and incubated 7 minutes in TO-PRO-3 (Invitrogen, 

cat. T3605), dilution 1:3000. To avoid fluorophore quenching, samples were 

covered with VectashieldR Mounting Medium (Vector Laboratories, cat. H-

1000). Confocal images of slides were acquired at a Leica laser scanning 

microscope TCS-SP2. 

In order to have a quantitative readout on doxorubicin incorporation we 

performed flow cytometry with CyAn ADP and Summit 4.3 software. The 

cells were dislodged with trypsin 0.05% (Invitrogen-GIBCO), the emission 

of doxorubicin was evaluated at 573 nm, and cells were gated as shown in the 

results. Data were analyzed with FCS4 express software. 

6.4 Sytox blue assay and cell counts 

To evaluate cell death we performed assays with Sytox Blue Dead Cell 

Stain, for flow cytometry (Invitrogen, Molecular Probes, cat. MP34857). 

According to the manufacturer’s instructions, 200000 cells (H1299) were 

sampled each condition and  incubated 15 minutes at room temperature with 

Sytox blue 1:1000 dilution. The samples were acquired at CyAn ADP by 

using Summit 4.3 software. The fluorescence excitation of nucleic acids of 

dead cells was measured with 405nm violet laser light. Data were analyzed 

with FCS4 express software. 

Lung, breast cancer cell lines and HeLa cells were treated 48 hours with 0.6 

μM doxorubicin and the rate of Sytox blue incorporation was evaluated as 

aforementioned. 
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Although this assay is very reliable, we evaluated the effect of Sorcin 

silencing on cell death and  the differentiation effect of retinoic acid with the 

traditional method of cell counts. The cells were dislodged diluted 1:1 with 

Trypan blue dye and counted in triplicates in a burker cell counting chamber. 

6.5 Sorcin localization, confocal microscopy  

In order to dissect the relocalization of Sorcin upon 72 hours retinoic acid 

treatment in NB4 and upon 1 hour treatment with 0.6 PM doxorubicin, the 

cell lines were processed as aforementioned for confocal microscopy 

purpose. After paraformaldehyde fixation, cells were incubated 30 minutes 

with a 1:200 dilution of primary antibody against Sorcin and, after PBS 1X 

washing steps, 30 minutes with Alexa Fluor 488 (Molecular Probes, Thermo 

Fisher)-conjugated secondary antibody against rabbit was used at a 1:500 

dilution. A Leica laser scanning microscope TCS-SP2 device was used and 

images were acquired with Leica confocal software. 

For immunofluorescence staining, mouse 3T3-L1cells were plated and  

grown on 10 mm glass coverslips, fixed with 2% paraformaldehyde for 20 

minutes, permeabilized with 0.2% Triton X-100 for 10 minutes and incubated 

in 50 mM glycine for 30 min more. Primary antibody dissolved in 1% bovine 

serum albumin was added and allowed to incubate overnight at 4 °C. Primary 

antibody was removed, wells washed and secondary AlexaFluor 488, 594 or 

647 was added and incubated for 1 h at room temperature. Conventional 

immunofluorescence and confocal microscopy were performed using 

confocal LSM710 vertical and Axiovert135M microscope (Zeiss). 

6.6 Rhodamine 123 incorporation 

To ascertain whether Sorcin silencing affects MDR1 functionality in 

pumping out the drugs from the cell, we performed a rhodamine 123 



124 
 

accumulation assay. This dye is extruded outside the cells by MDR1/MDR4 

pumps. First the cells were silenced for 48 hours, as mentioned, then a time 

course accumulation assay was performed. We considered 250000 cells each 

time point (30 minutes, 1 hour, 2 hours) and the assay was carried out 

incubating the samples at 37°C in RPMI 1640 medium without and with 1 

μM rhodamine 123. 

After incubation the samples were pelleted and washed twice in ice cold 

PBS1X. Then they were analyzed at CyAn ADP by using Summit 4.3 

software. The results were evaluated with FCS4 express software. 

6.7 Differentiation and morphology 

To verify the differentiation of NB4 cells upon treatment the cells were 

washed from media and spotted on slides with Shandon Cytospin 4 (Thermo 

electron, Waltham, MA, USA) at 200 rpm for 5 minutes. Then the slides 

were embedded in a solution of Giemsa dye for 5 minutes, rinsed in PBS and 

finally embedded in a 1:20 dilution of the first used Wright-Giemsa solution 

for 13 minutes. The excess of dye was washed out with water and the slides 

were observed by optical microscopy. 

6.8 Human Sorcin wild-type, SCBD and A2C mutant recombinant 
protein cloning, mutagenesis and purification. 

The cDNA of human Sorcin (I.M.A.G.E. Consortium clone 4281626) was 

amplified by PCR using primers containing restriction enzyme sequences 

recognized by NcoI and HindIII 

SH_NcoI_For: 5’-GGGAAACCATGGCGTACCCGGGGCAT-3’  
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SH_HindIII_Rev: 5’-

GGGAAAGGGAAGCTTTTAAACGGTCATGACACAC-3’ 

The PCR product was then ligated in pET23d vector (Novagen, Madison, 

WI, USA) digested with the same enzymes. The pET23d-human wt-Sorcin 

thus obtained was transformed in E. coli BL21(DE3) cells for expression 

purpose. 

The gene encoding Sorcin was also cloned into the pGEX-4t1 plasmid in 

order to have the GST-tagged protein. 

The Sorcin A2C mutagenesis was performed on Sorcin gene cloned in 

pET23d plasmid, which resulted in an untagged protein. The A2C mutation 

was introduced to facilitate labelling on the N-terminal exposed Cys wth Cy5 

maleimide dye for MST experiment purpose. The mutagenesis was carried 

out using the following oligonucleotides: 

SorA2C_For: 5’-

GAAGGAGATATACCATGTGCTACCCGGGGCATCCTGG-3’ 

SorA2C_Rev: 5’-

CCAGGATGCCCCGGGTAGCACATGGTATATCTCCTTC-3’ 

Human Sorcin calcium-binding domain (SCBD) was obtained from the 

pET23d vector with the insertion of a NcoI site in the suitable position to 

produce the truncated version of the protein, using the following 

oligonucleotides: 

SorHSCBD_NcoI_For: 5’- 

CGTTTCCCGGACAAACCATGGATCCGCTGTATGGTTACTTTGC-3’ 
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SorHSCBD_NcoI_Rev: 5’- 

GCAAAGTAACCATACAGCGGATCCATGGTTTGTCCGGGAAACGC- 

3’ 

The sequences of the mutated vectors were verified by the Sanger 

dideoxynucleotide technique. 

Wt-Sorcin, GST-tagged Sorcin, the Sorcin calcium binding domain (HSBD) 

and Sorcin A2C mutant were expressed in E. coli BL21(DE3) cells, and 

purified according to Meyers et al. (1995). 

6.9 Surface Plasmon Resonance (SPR) experiments 

SPR experiments with chemotherapic agents were performed with a SensiQ 

Pioneer apparatus. Wild type human Sorcin was immobilized via amine 

coupling onto a COOH5 sensorchip, previously chemically activated by 

100μl injection of a 1:1 mixture of N-ethyl-N′-3-

(diethylaminopropyl)carbodiimide (200 mM) and N-hydroxysuccinimide 

(50 mM). Immobilizations were carried out in 20 mM sodium acetate at pH 

4.5; the remaining groups were blocked by injecting 100 μl of 1 M 

ethanolamine hydrochloride at pH 9.5.  

The amount of immobilized Sorcin was detected by mass concentration-

dependent changes in the refractive index on the sensorchip surface, and 

corresponded to about 5000 resonance units (RU).  

Samples of analytes (doxorubicin, cisplatin, vinblastine, paclitaxel and 

retinoic acid) were dissolved in 100% DMSO at a concentration of 10 mM, 

and subsequently diluted in sterile HEPES 20 mM pH 7.4, NaCl 150 mM, 

500 μM CaCl2 (or EDTA) 0.005% surfactant P-20 to yield 2% DMSO final 
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concentration (HSP-2%D buffer) and final drug concentration: 200 μM or 20 

PM (for OneStep RA experiment). Further dilutions and all the experiments 

were carried out at 25°C in degassed HSP-2%D buffer.  

For FastStep experiments, the analytes were automatically diluted in HSP-

2%D and injected by 7 serial doubling steps (step contact time = 30 s, 

nominal flow rate = 100 µl/min). At the following time points: 1) 0-30 s; 2) 

31-60 s; 3) 61-90 s; 4) 91-120 s; 5) 121-150 s; 6) 151-180 s; 7) 181-198 s, 

analyte concentrations were: 1) 1.25 μM; 2) 2.5 μM; 3) 5 μM; 4) 10 μM; 5) 

20 μM; 6) 40 μM; 7) 80 μM. For OneStep experiments, Taylor dispersions 

were exploited to generate analyte concentration gradients that provide high-

resolution dose response in single injections. Full analyte titrations were 

recorded in HSPC-2%D over 4 orders of magnitude in concentration, up to 

80 μM.  

In both FastStep and OneStep experiments, the increase in RU relative to 

baseline indicates complex formation between the immobilized Sorcin ligand 

and the analytes. The plateau region represents the steady-state phase of the 

interaction. The decrease in RU after 198 s in FastStep experiments, or after 

350 s in OneStep experiments, indicates analyte dissociation from the 

immobilized Sorcin after HSP-2%D buffer injection. As a negative control, 

sensorchips were treated as described above in the absence of immobilized 

Sorcin. Values of the plateau signal at steady-state (Req) and full fittings with 

1, 2 and 3 sites were calculated from kinetic evaluation of the sensorgrams 

using the Qdat 4.0 program. 

Surface Plasmon Resonance (SPR) experiments with PDCD6 and its N-

terminus were carried out using a SensiQ Pioneer system. The sensor chip 
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(COOH5) was activated chemically by a 35 μl injection of a 1:1 mixture of 

N-ethyl-N′ -(3-(diethylaminopropyl)carbodiimide (200 mM) and N-

hydroxysuccinimide (50 mM) at a flow rate of 5 μ l/min. Ligands, i.e. 

PDCD6 and the N-terminal domain of PDCD6 

(KMAAYSYRPGPGAGPGPAAGAALP; a lysine residue has been added to 

the sequence to ensure peptide immobilization principally via the N-

terminus), were immobilized on activated sensor chips via amine coupling. 

The immobilizations were carried out in 20 mM sodium acetate at pH 4.5; the 

remaining groups were blocked by injecting 1 M ethanolamine hydrochloride 

(35 μl). 

Proteins interacting with the ligands (in 10 mM Hepes pH 7.4, 150 mM NaCl 

+ 0.005% surfactant P20) were injected on the sensor chip at a constant flow 

(30 μl/min). The same procedure was set using the buffer with CaCl2 at 100 

μM concentration, or with 1 mM EDTA. The increase in RU relative to 

baseline indicates complex formation; the plateau region represents the 

steady-state phase of the interaction, whereas the decrease in RU represents 

dissociation of Sorcin or SCBD from immobilized ligands after injection of 

buffer. Regeneration procedures are based on two long (2000 s and 500 s) 

injections of buffer, separated by a brief (5 s) injection of 10 mM NaOH. The 

sensorgrams were analysed using the SensiQ Qdat program.  

In Sorcin-CEP97 SPR experiment Sorcin was immobilized as 

abovementioned, CEP97 peptide was dissolved in HEPES 20 mM pH 7.4, 

NaCl 150 mM, 500 μM CaCl2 to a final concentration of 1 mM. Then a 

traditional SPR experiment was performed using 4 serial dilution (1:2) from 

25-200 PM analyte final concentrations. The sensorgrams were analysed 

using the SensiQ Qdat program.  



129 
 

6.10 Fluorescence titrations 

Static fluorescence measurements were performed at 25°C with a Horiba 

Fluoromax-4 spectrofluorometer using 1-cm path-length quartz cuvettes (slit 

width: 5 nm in excitation and emission). Fluorescence measurements were 

performed on Sorcin and SCBD, a shorter construct missing the first 32 

residues, at two different concentrations: 30 nM and 37 nM, in Tris-HCl 10 

mM pH 7.5 and EDTA (0.5 μM) or MgCl2 (1 mM or 5 mM). The excitation 

wavelength was set at 280 nm and emission spectra were collected in the 

300–400 nm range. Triplicate samples were measured; each figure represents 

the average of three experiments. Maximum emission occurs at 340 nm for 

SCBD and 338 nm for Sorcin. Upon doxorubicin addition, fluorescence 

quenching was observed to a maximum extent of about 60% in saturating 

condition. For each sample fluorescence was measured after 3 minutes of 

incubation. 

Since doxorubicin absorbs light at 280 nm, fluorescence measurements are 

affected by the inner-filter effect. The following formula was employed for 

correction: Fcor=Fobs10^[(Aex)/2], where Fcor and Fobs are the corrected 

and observed fluorescence intensities, respectively, whereas Aex is the 

absorbance of each concentration of ligand at 280 nm [IFE-correction]. The 

effect is negligible at the concentrations of doxorubicin used (5-3000 nM). 

Data were fitted with the software Qtiplot assuming two independent binding 

sites. The equation used for data fitting is the weighted sum of two 

independent binging events: K*((k+c+x)-sqrt((k+c+x)^2-

4*c*x))/(2*c)+H*((h+c+x)-sqrt((h+c+x)^2-4*c*x))/(2*c), where c is protein 

concentration, k and h are the two binding constants, K and H are the fraction 

of signal due to each binding event.  
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6.11 Crystallization, data collection and structure solution and 
refinement of Apo, calcium-bound and doxorubicin-bound Sorcin 

6.11.1 Apo and calcium-bound Sorcin X-Ray crystal structure 

Recombinant proteins (human Sorcin, SCBD and PDCD6) were expressed in 

pET vectors (Novagen) in E. coli BL21(DE3) cells, purified according to 

published procedures (Meyers MB et al. 1995) and dialysed in 20 mM Tris-

HCl, at pH 7.5. Automated crystallization screening and by-hand 

optimization were carried out at 298 K by the hanging-drop vapor diffusion 

method. Since Sorcin precipitates when it is saturated with calcium, we 

performed the starting crystallization trials with commercial screens adding 5 

mM CaCl2 in the reservoir before mixing the crystallization drops. ApoSor 

resulted to be rather prone to crystallization even in the presence of calcium; 

therefore, in order to discriminate between apoSor and CaSor crystals we 

performed all the crystallization trials in double, with and without calcium. 

The apoSor crystallization trials were performed using a protein sample 

concentrated to about 10 mg/ml. Aliquots (1 μl) of the protein sample were 

mixed with an equal amount of reservoir solution containing 20-22% (w/v) 

polyethylene glycol 4000, 0.3-0.5 M ammonium sulfate. Crystals grew in 2 

weeks and reached dimensions of 0.1 mm × 0.2 mm × 0.3 mm. 

Crystals of CaSor were obtained by mixing 1 μl of protein solution, 

concentrated to about 15 mg/ml, using a reservoir solution containing: 20-

25% (w/v) polyethylene glycol 3350, 0.5 M lithium sulfate, 0.1 M Tris-HCl 

at pH = 8.5 and 5 mM CaCl2. For data collection, apoSor and CaSor were 

cryo-protected in a solution containing 80% (v/v) of mother liquor and 20% 

(v/v) polyethylene glycol 200. The crystals were mounted in nylon loops and 
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flash frozen by quick submersion into liquid nitrogen and transported to the 

synchrotron-radiation source. Single-wavelength data sets (λ = 1 Å) were 

collected from crystals of apoSor and CaSor at the 5.2 R beamline of the 

Synchrotron Radiation Source ELETTRA (Trieste, Italy), using a Pilatus 2 M 

detector at a temperature of 100 K. The data sets were processed with XDS45 

and scaled with XSCALE (Kabsch W 2010). Crystal parameters and data 

collection statistics for the measured crystals are listed in Table 1. 

The structure of apoSor was determined by molecular replacement with the 

program MOLREP (Vagin and Teplyakov, 1997) (CCP4 suite) using the 

structure of the calcium-free human Sorcin (PDB entry 1JUO) (Xie X et al., 

2001) as search model. 

The case of CaSor was more complex: first we solved the structure of SCBD 

(Sorcin Calcium Binding Domain) with calcium (Ca-SCBD, data not shown), 

using the structure of the calcium-free human Sorcin; then we used SCBD 

monomer to solve CaSor. Ca-SCBD crystallized in orthorhombic space group 

and the Matthews coefficient calculation indicated a dimeric asymmetric unit. 

The first attempts to solve the phase problem for Ca-SCBD using the whole 

apo-Sorcin dimer were unsuccessful, suggesting a wide conformational 

variation. Based on previous published results we expected that the variation 

regarded mainly the EF1–2–3 subdomain. For this reason we performed the 

rotational and translational searches with a truncated apo-dimer including E-

F-G-H helices (EF4–5 plus part of EF3), finding a partial solution. We fixed 

this solution and repeated the search using the rest of the apo-model (helices 

A, B, C, D). Refinements were performed using the maximum-likelihood 

method with the program REFMAC (Murshudov et al., 1997) and model 

building with the program Coot (Emsley P, Cowtan K., 2004). The quality of 
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the models was assessed using the program PROCHECK (Laskowski et 

al.,1993). The structure of apoSor was refined to 2.1 Å resolution. The final 

model contains 168 residues (residues 30–198), 73 water molecules, 5 sulfate 

ions. The structure of CaSor was refined to 1.65 Å resolution. The final 

model contains 172 residues (residues 26–198), a six residues long peptide, 

124 water molecules, 1 sulfate ion, 3 Ca2+ ions with full occupancy and 3 

PEG molecules for each monomer. 

The coordinates for apoSor have been deposited in the Research 

Collaboratory for Structural Bioinformatics (RCSB) PDB with accession 

code 4UPG. The coordinates for CaSor have been deposited in the RCSB 

PDB with accession code 4USL. 

6.11.2 Doxorubicin-bound Sorcin X-Ray crystal structure 

Crystallization experiments were performed with both human Sorcin and 

SCBD. Automated crystallization screening and by-hand optimization were 

carried out at 298 K by vapor diffusion method. 

At first soaking technique was attempted but, while doxorubicin is deep red, 

the crystals stayed uncolored; then we moved to co-crystallization. Since 

Sorcin precipitates in presence of doxorubicin excess, trials were set up by 

adding the ligand to the crystallization drop (0.4 μl of 0.5 mM protein + 0.4 

μl of reservoir + 0.1 μl of 30 mM doxorubicin) to a ligand/protein ratio of 

about 15. Colored crystals, from light pink to red, grew in many conditions 

but most of them resulted in poor diffraction. The best dataset collected was 

at 3.7Å resolution, from a SCBD crystal grew in 0.2 M MgCl2, 0.1 M Tris-

HCl pH 7, 2.5 M NaCl. The crystals were cryoprotected by adding 40% w/v 

glucose to the mother liquor.  
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A single wavelength (0.9677 λ) dataset was collected at ESRF at 100 K on 

the ID30-A3 MASSIF3 beamline equipped with a Eiger-X-4M detector and 

processed with XDS (Kabsch W 2010). Crystal parameters and data 

collection statistics are reported in Table 6 (below).  

 

Table 6: Crystal parameters, data collection statistics and refinement statistics 

The structure was determined by molecular replacement with the program 

MOLREP (Vagin, Teplyakov 1997) (CCP4 suite) using the structure of the 

calcium-free human Sorcin (PDB entry 4UPG) as search model. Refinement 

was performed using the maximum-likelihood method with the program 
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REFMAC (Murshudov et al. 1997) and model building with the program 

Coot (Emsley, Cowtan 2004). 

Fluorescence emission spectra of SCBD-doxorubicin crystals were collected 

at ESRF ID29S at 100K and excitation wavelenght 473 nm. The 

experimental setup is described in more detail in a paper by Royant et al. 

(Royant et al. 2007). 

6.12 Combinatorial Phage display 

We used a phage library displaying 16mer randomized peptides (diversity 4 × 

1010) on the p8 protein flanked by spacer linkers at the N- and C- termini 

(SSSG- and GGGSGG, respectively). 

The library is similar to the previously established C-terminal library 

(Tonikian R. et al. 2008), but displaying internal, instead of C-terminal, 

peptide stretches. Phage selections were performed in 5 rounds, following the 

detailed protocols by Huang and Sidhu (2011). To assess a potential calcium 

dependence of the interactions selections were performed in parallel using 

either 1 mM EDTA or 1 mM CaCl2 during the incubation of the phage library 

with the bait protein as well as in all washing steps. Such an approach has 

previously been successfully used for the identification of calcium-dependent 

interactions for the calcium-binding protein S100B52. Clonal analysis and 

sequencing was performed as previously described below. 

 

6.13 Proteomic peptide Phage display selection 

The selection process was an adaptation of methods by Huang and Sidhu 

(2011). The buffers were sterile filtered to minimize contaminations. TBS 
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(50mM Tris-HCl pH 7.5; 150mM NaCl) was used during the selections, and 

was supplemented with 1 mM CaCl2, except during protein immobilization 

when it was supplemented with 1 mM EDTA to avoid protein precipitation. 

Before the first day of selection 15 Pg of Sorcin was coated in duplicate on a 

96-well Maxisorp plate beside the negative control (GST), in a total volume 

of 100 Pl of TBS 1 mM EDTA, to avoid Sorcin precipitation. The incubation 

of the proteins proceeded at 40C over-night. The immobilization is unspecific 

and based on hydrophobic interaction. The plate with coated protein was 

blocked with 200 Pl of blocking buffer (TBS, 1 mM CaCl2, 0.5% BSA) for 1 

hour at 40C on a shaking table. 

Meanwhile the naïve peptide phage library was prepared. As it is stored in 

25% glycerol, the first step was to precipitate it and resuspend it in 

appropriate buffer. 10 Pl of phage library was diluted with 500 Pl TBS. The 

phages were precipitated using 20% PEG8000 (w/v)/400 mM NaCl solution, 

10 min incubation on ice and centrifugation for 10 minutes at 13000 rpm. 

The supernatant was aspirated and the pellet resuspended in TBS. The 

resuspended phage library was added to the GST-coated well for negative 

pre-selection for 1 hour at 40C. Prior to addition of the phage library, the 

wells were washed four times with TBS, 1mM CaCl2, 0.05% Tween20 

(TBST buffer). The wells coated with target protein were similarly washed 

before the phage library was moved from the pre-selection wells to target 

wells. Binding was allowed for 2 hours at 40C. 

Each day of selection, three 10 ml E. coli Omnimax cultures in 2TY (10 g 

Tryptone, 10 g Yeast extract and 5 g NaCl) medium were started from a 

stock culture. One was supplemented with 10 Pg/ml tetracyclin to be used for 

elution of the actively growing phage, and the two other supplemented with 
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30 Pg/ml kanamycin or 100 Pg/ml carbenicillin served as controls for pre-

infection of the cells with M13K07 helper phage or from the M13 phage. 

Once the Omnimax cells reached the log phase, they were used to elute 

bound phages from the bait protein.  Unbound phage were removed from the 

wells, the wells were washed 4 times with TBST buffer and bound phages 

were eluted using E. coli Omnimax log phase culture; the elution proceeded 

30 minutes at 370C shaking after which the bacteria were infected with of 

M13K07 helper phage for 45 minutes at 370C. In the meantime, 2TY medium 

supplemented with kanamycin, carbenicillin and 0.3 mM IPTG was prepared. 

The hyperinfected bacteria were transferred from the wells to the media and 

were grown over-night at 370C shaking. 

To monitor the progress of the selection, serial dilutions of with E. coli 

infected with out-phages and in-phages were spotted carbenicillin containing 

agar plates. Out-phages are the phage eluted with E. coli log phase cell 

culture, the in-phages were from the resuspended naïve phage library.  

The following day, the bacteria were pelleted by centrifugation (5000 rpm, 

10 minutes). The phage containing supernatants were transferred to new 

falcon tubes containing 20% PEG8000 solution. The phages were 

precipitated on ice for 15 minutes and then pelleted for 15 minutes at 9000 

rpm. The phage pellets were resupended in TBST. The selection process was 

repeated for five days. In parallel, selections were performed in absence of 

calcium (i.e. by using a TBS buffer supplemented with 1 mM EDTA). 

6.14 Pooled phage ELISA assay 

In order to analyze the progress of the selection, a pooled phage ELISA assay 

was performed.  



137 
 

The bait protein and the negative control protein were immobilized in a 96-

well Maxisorp plate (15 Pg of protein beside 15 Pg of GST as negative 

control). The wells were blocked with BSA (TBS, 1mM CaCl2, 0.5% BSA), 

phage pools from each selection day were added to protein and to control 

wells and incubated for 30 minutes at room temperature. 

The wells were washed four times with TBST buffer, and the bound phage 

detected by incubation with 1:5000 dilution of M13 antibody-HRP conjugate 

solution and incubated for 30 minutes at room temperature. When the 

incubation time was over, wells were washed four times with TBST and one 

time with TBS. The bound antibody was detected adding peroxidase 

substrate to each well. The reaction was allowed to proceed for a maximum 

time of 10 minutes until the solution color turned blue. The reaction was 

stopped by the addition of 0.6 M H2SO4. The solution color turned yellow 

and the absorbance was read at 450 nm using a plate-reader 

spectrophotometer. The absorbance ratio between the wells coated with 

Sorcin and GST was calculated. A signal-to-background ratio higher than 

two suggested that the phage pools were getting enriched for specific Sorcin-

binding clones. The pooled phage ELISA results suggested a saturation of 

binding clones the fourth day of selection. 

6.15 Clonal phage ELISA and sequencing of binding clones 

To obtain single colonies of phage infected binding clones, a log phase cell 

culture of E. coli Omnimax was infected with the out-phage of the 4th day of 

selection for 30 minutes 370C. A dilution series of infected cells was 

performed and the 6th dilution was plated on carbenicillin agar plate in and 

grown over night.  
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A 96-well plate was prepared with 350 Pl/well of 2TY medium, carbenicillin 

and M13K07 helper phages. Single phage infected phage colonies were 

picked to each well and the plate was then incubated over-night at 370C 

shaking. The next day, the bacteria were pelleted by centrifugation (3500 rpm 

for 20 minutes). The phage containing supernatant was used for clonal phage 

ELISA assay as described in the previous section. The DNA of confirmed 

binding clones was then amplified by PCR reaction using primers annealing 

to regions flanking the peptide coding sequence. The success of the PCR 

reactions was confirmed through 1% agarose gel electrophoresis. The PCR 

products underwent a clean-up reaction with Shrimp Alkaline Phosphatease 

(SAP) to remove 5'- and 3'-phosphate groups from DNA and with 

Exonuclease 1 (EXOI). The concentration of PCR products was estimated 

through a new 1% agarose gel using a MassRulerTM DNA ladder. The 

samples were then sent for sequencing. Enriched binding phage pools were 

further analyzed through NGS. 

6.16 Data set analysis 

NGS generated information on a set of potential binding peptides. The 

dataset contained both specific binding clones and potentially non-specific 

clones. The first step was to focus on the more enriched peptides (i.e. with 

higher sequencing counts) and then to investigate if they contained a shared 

binding motif.  In addition, the biological function of the host  proteins 

harboring the identified ligands was analyzed. The data set analysis was 

carried out according to the following pipeline: 

- a list of NGS high-count peptides was chosen for further analysis; 
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- among the unchosen peptides, sequences with a motif similar to Pro flanked 

by  aromatic hydrophobic residues (I) and/or aromatic hydrophobic residues 

flanked by acidic residues (D, E) e.g��IIxP; E/DI��from combinatorial phage 

display selection)�were included in the list of targets; 

- Sorcin-related biological function (GO TERM) list was generated; 

- evolutionary sequence conservation of chosen peptides was verified using 

the Ensembl (http://www.ensembl.org/index.html) alignment tool among 

placental mammalian subgroup, and Peptools 

(http://slim.ucd.ie/peptools/index.php) among metazoan, and ConSurf server 

(http://consurf.tau.ac.il/2016/) without constraints; the Ensemble generated 

multiple sequence alignment was analyzed with and WebLogo 

(http://weblogo.berkeley.edu/logo.cgi); 

- subcellular and tissue localization were evaluated using the Compartments 

database (http://compartments.jensenlab.org/Search) (Binder et al. 2014), 

PaxDb (http://pax-db.org/), and Human Protein Atlas 

(http://www.proteinatlas.org/). 

- network analysis was performed using Cytoscape 

(http://www.cytoscape.org/) on the novel dataset together with information 

obtained from Biogrid (http://thebiogrid.org/) and IntAct 

(http://www.ebi.ac.uk/intact/). 

The Cytoscape network was generated using information of Biogrid and 

IntAct databases. The list of reported interactions for each peptide of NGS 

dataset were downloaded as text files. These files were used to build 

networks using Cytoscape. The networks of every target and Sorcin were 

http://slim.ucd.ie/peptools/index.php
http://consurf.tau.ac.il/2016/
http://weblogo.berkeley.edu/logo.cgi
http://compartments.jensenlab.org/Search
http://pax-db.org/
http://thebiogrid.org/
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merged in a single network, then used to extract a network consisting of 

Sorcin first neighbour of the first neighbour interactions. 

6.17 Phage clones analysis 

Binding was validated for selected phage clones through clonal phage 

ELISA. Oligonucleotide sequences were designed encoding the desired 

peptide sequences and flanked by annealing sites to the phagemid encoding 

the pVIII coat protein. Following the protocol developed by Kunkel (1985), 

designed oligos were phosphorylated using T4 PNK kinase, annealed to the 

phagemid ssDNA template, the second DNA strand synthesis was performed 

over-night at 200C using T4 ligase and T7 polymerase. 

The newly generated dsDNA was chemically transform into E. coli 

Omnimax cells. Finally as mentioned in the previous section, GST-tagged 

Sorcin and the negative control GST were immobilized on a 96 well plate 

and single colonies from transformation were picked in to a 1.2 ml well plate 

together with M13 M13K07 helper phage and carbenicillin in order to 

generate phage displaying desired peptides.  

6.18 Phage clones mutants 

In order to find crucial residues involved in the interaction between Sorcin 

and selected targets (see below) mutants were designed where the chosen 

residues were replaced with alanine residues. 

Mutagenic oligos were designed for PPP1R3G, CAC1B, NUP214, SYT16, 

CEP97. In the following list the bold letters of the peptide sequences 

represent designed mutated residues, whereas in the oligonucleotide 

sequences the bold-capital letters represent the mutated nucleotides.  
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PPP1R3G (YTFTEWRSFLDVPAE) 

ctggctatacctttaccgCGGCgcgtagctttctggatgtgccggcggaa 

PPP1R3G (YTFTEWRSFLDVPAEL) 
cgaatggcgtagctttctggCGgCgGcggcggaactgggtggag 

CAC1B (SYVSSLTSQSHPLRRV) 
cctgaccagccagagccatGcgGCgcgtcgtgtgggtggagg 

SYT16 (EQKPKFSRSLLTHGED) 

catctggcgaacagaaaGcgaaaGCGagccgtagcctgctgac 

 NUP214 (LVPERETLFNTLANNR) 

ctcttcatctggcctggCgGcggCGcgtgaaaccctgtttaac 

CEP97 (LIPEHSSPVQDAQISQ) 

cctcttcatctggcctgGCGGcggCGcatagcagcccggtgcag 

The mutagenesis was performed on template ssDNA prepared for each phage 

clone. An E. coli CJ236 cell culture was grown in 2TY medium and 

chloramphenicol to reach the log phase. It was then infected for 30 minutes 

with the distinct phage clones. The infected cells were plated on carbenicillin 

agar plates to obtain single colonies. The following day single colonies were 

picked into 2TY medium supplemented with M13KO7 helper phages, 

carbenicillin and chloramphenicol and grown for 2 hours at 370 C shacking. 

Kanamicyn was added to select bacteria co-infected with helper phages and 

the cultures were grown for 6 hours. Finally the cultures were transferred into 

30ml of 2TY medium with carbenicillin, kenamycin and uridine then grown 

for 20 hours at 370 C. The day after the cells were centrifuged for 10 minutes 

at 1500 rpm at 40 C, the supernatant transferred to a new falcon tube 

containing 7,5 ml of PEG8000 0,4M NaCl and incubated for 5 minutes at 
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room temperature, to precipitate phages. Then the phages were pelleted by 

centrifugation, supernatant was decanted and the phage pellet resuspended in 

0,5ml PBS. Single-stranded DNA from M13 phage was isolated using 

QIAGEN® Plasmid Kits according to manufacturer’s instructions. 

The mutants were generated according to Kunkel protocol described in phage 

clones paragraph (Kunkel, 1985). The binding of generated mutants was 

validated through phage ELISA assay. 

6.19 Sorcin A2C cysteine labeling with Cy5 and MiscoScale 
Thermophoresis (MST) 

The purified Sorcin A2C mutant was diluted into the labeling reaction buffer 

(150 mM sodium bicarbonate pH 8.5) to make a 2PM protein solution. The 

labeling reaction was carried out adding 2Pl of Cy5 (0,8mM) to 50�Pl of 

diluted protein; the reaction proceeded overnight at 40 C. 

The excess of dye was removed using a desalting column step using Zeba™ 

Spin Desalting Columns (Thermo Scientific). The labeling buffer was 

exchanged with 20mM Hepes pH 7.5 through an overnight dialysis. Finally 

the concentration of the protein and the degree of labeling (DOL) was 

determined spectrophotometrically according to the following formulas: [P]= 

(A280*A650)/ Hprotein; DOL= (A650/Hdye)/ [P]. 

MST experiments were performed at Monolith NT.automated (Nanotemper 

Technologies).  

MST is a fluorescence-based technique used to measure molecular 

interactions and kinetics. Thermophoresis is the motion of molecules in 

temperature field; it is very sensitive to changes in size, charge, solvation 
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shell and conformation of a molecule, indeed when an interaction occurs all 

these molecular properties can change allowing the quantification of binding 

events (Jerabek-Willemsen et al 2011; Jerabek-Willemsen et al. 2014). The 

temperature gradient is induced by an infrared laser, and the direct movement 

of molecules through the temperature gradient is detected thanks to a 

fluorescent label or intrinsic tryptophan fluorescence, if present, on ligands or 

target. Serial dilution of unlabeled molecule is performed and a constant 

concentration of labeled molecule is added to each dilution, so that every 

capillary has a different concentration of ligand against a constant 

concentration of target. The main advantage of MST is that the interaction is 

measured in solution and does not require a large consumption of sample. 

The signal consist of different subsequent processes that can be separated by 

their timescale and  infrared laser source, and each of these individual phases 

contains information about the affinity and mechanism of binding (Jerabek-

Willemsen et al. 2014). These phases are: Temperature Jump (T jump), 

thermophoresis, steady state, inverse temperature jump and back diffusion 

(Figure 40). 
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Figure 40: A typical MST signal for a single capillary. Here is shown the molecules behavior into 
the temperature field upon infrared laser excitation (Jerabek-Willemsen et al 2011). 

 

To avoid protein precipitation or stickiness to capillary walls, premium 

coated capillaries were used and 0,05% of pluronic reagent was added to 

protein buffer (10 mM Hepes pH 7.5, 150mM NaCl, 100 PM CaCl2). The 

experiments were carried out at a constant protein concentration (0.25 PM) 

and 1:1 dilution series of the peptide, starting from a maximum concentration 

of 500 PM (PPP1R3G, SYT16), 250 PM (CAC1B, CEP97) or 1000 PM 

(NUP214). Synthetic peptides were ordered and dissolved in milliQ water. 

The PPP1R3G peptide was dissolved in water with and the pH adjusted using 

1mM NaOH to increase its solubility. 
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A B S T R A C T

The development of drug resistance continues to be a dominant hindrance toward curative cancer treatment.
Overexpression of a wide-spectrum of ATP-dependent efflux pumps, and in particular of ABCB1 (P-glycoprotein
or MDR1) is a well-known resistance mechanism for a plethora of cancer chemotherapeutics including for ex-
ample taxenes, anthracyclines, Vinca alkaloids, and epipodopyllotoxins, demonstrated by a large array of pub-
lished papers, both in tumor cell lines and in a variety of tumors, including various solid tumors and hemato-
logical malignancies. Upon repeated or even single dose treatment of cultured tumor cells or tumors in vivo with
anti-tumor agents such as paclitaxel and doxorubicin, increased ABCB1 copy number has been demonstrated,
resulting from chromosomal amplification events at 7q11.2-21 locus, leading to marked P-glycoprotein over-
expression, and multidrug resistance (MDR). Clearly however, additional mechanisms such as single nucleotide
polymorphisms (SNPs) and epigenetic modifications have shown a role in the overexpression of ABCB1 and of
other MDR efflux pumps. However, notwithstanding the design of 4 generations of ABCB1 inhibitors and the
wealth of information on the biochemistry and substrate specificity of ABC transporters, translation of this vast
knowledge from the bench to the bedside has proven to be unexpectedly difficult.

Many studies show that upon repeated treatment schedules of cell cultures or tumors with taxenes and an-
thracyclines as well as other chemotherapeutic drugs, amplification, and/or overexpression of a series of genes
genomically surrounding the ABCB1 locus, is observed. Consequently, altered levels of other proteins may
contribute to the establishment of the MDR phenotype, and lead to poor clinical outcome. Thus, the genes
contained in this ABCB1 amplicon including ABCB4, SRI, DBF4, TMEM243, and RUNDC3B are overexpressed in
many cancers, and especially in MDR tumors, while TP53TG1 and DMTF1 are bona fide tumor suppressors. This
review describes the role of these genes in cancer and especially in the acquisition of MDR, elucidates possible
connections in transcriptional regulation (co-amplification/repression) of genes belonging to the same ABCB1
amplicon region, and delineates their novel emerging contributions to tumor biology and possible strategies to
overcome cancer MDR.

Introduction

The development of drug resistance limits the effectiveness of che-
motherapeutic drug treatment in cancer, with over 90% treatment
failure rate in metastatic tumors. Many mechanisms, either intrinsic or
acquired, operate to confer drug resistance (Goler-Baron and Assaraf,

2011; Gonen and Assaraf, 2012; Gottesman, 2002; Holohan et al., 2013;
Housman et al., 2014; Ifergan et al., 2005; Longley et al., 2006;
Wijdeven et al., 2016; Zhitomirsky and Assaraf, 2016). Poor drug so-
lubility and toxicity to normal tissues limit the doses of chemother-
apeutic drugs that can be administered to cancer patients, while phar-
macokinetic effects, i.e. absorption, distribution, metabolism and
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elimination, limit the actual amount of drug that reaches the tumor.
Furthermore, at the level of the tumor, several established mechanisms
confer resistance to one or more chemotherapeutic agents including
impaired drug uptake due to decreased expression and/or loss of drug
influx transporters, enhanced drug efflux, alterations in plasma mem-
brane lipid composition, inhibition of apoptosis, enhanced DNA da-
mage repair, cell cycle and/or checkpoint alterations, drug compart-
mentalization away from the drug target, increased drug metabolism
and inactivation, drug target alteration, and epithelial-mesenchymal
(EMT) transition (Bram et al., 2009; Debatin and Krammer, 2004; Fojo
and Bates, 2003; Goler-Baron et al., 2012; Gonen and Assaraf, 2012;
Holohan et al., 2013; Housman et al., 2014; Ifergan et al., 2005; Lowe
et al., 2004; Maier et al., 2005; Raz et al., 2014; Stark et al., 2011;
Zhitomirsky and Assaraf, 2016) (Fig. 1). Some of these mechanisms
confer resistance to single agents, thus allowing possible effective
treatment with alternative chemotherapeutic drugs, while other confers
resistance to multiple, structurally unrelated chemotherapeutic drugs
(i.e. multidrug resistance, MDR), thereby rendering the tumor re-
fractory to drug treatment, hence markedly decreasing cure rates.
Moreover, tumor heterogeneity is an important determinant in the
development of drug resistance (Alizadeh et al., 2015; Andor et al.,
2016; Lawrence et al., 2013; Swanton, 2012): both genetic and non-
genetic mechanisms contribute to the generation of different sub-
populations of cancer cells within individual tumors, and clonal selec-
tion upon treatment can account for positive selection of drug-resistant
tumor populations. In particular, the presence of cancer stem cells
(CSCs) in the tumor is a critical factor for the acquisition of chemore-
sistance. CSCs constitute a minor subpopulation of cells intrinsically
resistant to chemotherapeutic drugs, due to epigenetic mechanisms that
determine increased expression of anti-apoptotic proteins and of ATP-
binding cassette (ABC) transporters, which mediate multidrug efflux,
and their inherent quiescence (Al-Hajj et al., 2004; Dean, 2009;
Feuerhake et al., 2000; Lerner and Harrison, 1990; Peters et al., 1998;
Shibue and Weinberg, 2017; Zhou et al., 2001). Since the drug treat-
ment affects only the sensitive population, the drug-resistant cell sub-
population survives and eventually spreads, making the cancer treat-
ment ineffective.

MDR efflux pumps of the ABC superfamily of transporters

Among the mechanisms of drug resistance, the predominant one in
cancer cells and possibly the most studied one is the drug efflux by pro-
teins of a large superfamily of ATP-dependent efflux pumps, i.e. the ATP-
binding cassette (ABC) transporters (Li et al., 2016b). This superfamily is
composed of 48 genes and 3 pseudogenes (HUGO Gene Nomenclature
Committee, http://www.genenames.org/cgi-bin/genefamilies/set/417),
belonging to 7 subfamilies (ABCA through ABCG), mostly ATP-dependent
transporters of metabolites, xenobiotics and signaling molecules through
cell membranes against their concentration gradients (Dean, 2005;
Fletcher et al., 2010; Fletcher et al., 2016). ABC transporters belong to one

of the largest and more diffused superfamily, with representatives in all
phyla, from prokaryotes to humans (Wilkens, 2015). ABC transporters can
be grouped into exporters (which export lipids, sterols, drugs, and a large
variety of primary and secondary metabolites) and importers (which take
up a large variety of nutrients, biosynthetic precursors, trace metals and
vitamins); bacteria use both ABC importers and exporters, while all eu-
karyotic ABC pumps are exporters, except for ABCA4 (Quazi et al., 2012).

Structural organization of ABC transporters

Canonically, ABC transporters are organized in four domains, i.e.
two nucleotide-binding well conserved domains (NBD) or subunits and
two transmembrane domains (TBD) or subunits, that can be more
heterogeneous (Fig. 2). Prokaryotic ABC transporters are often as-
sembled from separate protein subunits, composed of two NBDs and
two TMDs, either identical (homodimeric) or different (heterodimeric);
most importers have additional substrate-binding domains or proteins,
which bind the substrate in the periplasm (Gram-negative bacteria) or
external space (Gram-positive bacteria and Archaea) and deliver it to
the TMDs. Eukaryotic exporters are composed of one rather large
polypeptide containing two NBDs and two TMDs (e.g., ABCB1), or
consist of two polypeptides, each of which contains an NBD and a TMD
as in the prokaryotic exporters (Biemans-Oldehinkel et al., 2006; ter
Beek et al., 2014).

The NBDs are ABC components, i.e. ATPase domains that bind and
hydrolyze ATP, about 200-amino acid long, with two subdomains, a
RecA-like domain and a α-helical domain (Fig. 2A). NBDs are char-
acterized by the presence of the following motifs: 1) An A-loop, with a
conserved aromatic residue (often a tyrosine), that serves to position
the ATP by stacking with the adenine ring; 2) the P-loop or Walker A
motif (GXXGXGK(S/T)), a phosphate-binding loop with a highly con-
served lysine residue, whose backbone amide nitrogens and the ε-amino
group form a network of interactions with β- and γ-phosphates of ATP;
3) the Walker B motif (ϕϕϕϕDE, where ϕ is a hydrophobic amino acid)
which coordinates the magnesium ion via the conserved aspartate re-
sidue, while the second acidic residue at the end (usually a glutamate
residue) is the general base that polarizes the attacking water molecule
(Oldham and Chen, 2011); 4) the D-loop (consensus motif: SALD); 5)
the H-loop (or switch region), with a highly conserved histidine that
interacts with the conserved aspartate from the D-loop, the glutamate
residue of the Walker B motif and with the γ-phosphate of the ATP, and
helps positioning of the attacking water, of the general base and of the
magnesium ion; 6) the Q-loop, containing eight residues with a con-
served N-terminal glutamine, located at the interface between the
RecA-like subdomain and the α-helical subdomain, in contact with the
TMDs; the glutamine residue can move in and out of the active site
during the ATP hydrolysis cycle, forming the active site upon Mg-ATP
binding and disrupting upon ATP hydrolysis; 7) the ABC signature motif
(or C motif, LSGGQ) is located at the α-helical subdomain, a char-
acteristic feature of the ABC superfamily, not present in other P-loop

Fig. 1. Mechanisms that confer drug resistance upon human cancer cells.
Left: pharmacokinetic factors, i.e. drug absorption, distribution, metabo-
lism and elimination (ADME), limit the effective concentration of the drug
that reach the cancer. Center and right: Drug influx and efflux limit the
amount of drug that enters the tumor cell; multiple documented me-
chanisms, such as drug inactivation, drug target alteration, drug com-
partmentalization, enhanced DNA damage repair, cell cycle/checkpoint
alterations, apoptosis inhibition and epigenetic alterations limit tumor cell
death; epithelial-to-mesenchymal transition and metastasis are also pos-
sible escape routes of tumor cells (Alizadeh et al., 2015; Gonen and
Assaraf, 2012; Holohan et al., 2013; Housman et al., 2014; Wijdeven et al.,
2016; Zhitomirsky and Assaraf, 2016).

I. Genovese et al.

http://www.genenames.org/cgi-bin/genefamilies/set/417


NTPases such as the F1-ATPase (Hanekop et al., 2006; Li et al., 2016b;
Smith et al., 2002; ter Beek et al., 2014; Verdon et al., 2003).

Two ATP binding sites are formed by the two NBDs of each ABC
transporters; however, it is yet unclear whether or not the hydrolysis of
two ATP molecules is needed for each transport cycle. In the bacterial
maltose transporter MalEFGK2 two functional ATP sites are needed,
while only one functional ATP site is needed in the histidine transporter
HisP2MQJ, and some ATP transporters have only a single ATPase site,
while the second one is degenerated (Davidson and Sharma, 1997;
Jones and George, 2013; Nikaido and Ames, 1999; Procko et al., 2009).
The two NBDs can assume a closed conformation if tightly packed to-
gether, or an open conformation if more distant. ATP hydrolysis can
take place only in the closed conformation; the release of ADP and
phosphate destabilizes the NBD dimer, the RecA-like and α-helical
domains move apart, the NBD dimer dissociates, and the movement can
be transmitted to the TMDs.

TMDs are more heterogeneous. In ABC exporters, however, TMDs
have a common structural fold, based on the presence of a six trans-
membrane helix-based core (Fig. 2B), which considerably stretches out
into the cytosol, where a short coupling helix protrudes from the TMD
and fits in a groove of NBD between the RecA-like and α-helical do-
mains, containing the Q-loop, allowing the transduction of the ATP-
dependent movement of NBD to TMD (Dawson and Locher, 2006;
Hollenstein et al., 2007). The transmembrane helices of the two TMDs
usually form a pore that can either be accessible from the cytoplasm
(inward facing) or from outside the cell (outward facing) (Figs. 2 and
3): according to the alternating-access model, alternation between these
conformations occurs during the catalytic cycle, to allow substrate
binding and its transport across the membrane, against its chemical
gradient (Ward et al., 2007).

Several catalytic mechanisms have been proposed for ABC trans-
porters (Higgins and Linton, 2004; Jones and George, 2014; Linton and
Higgins, 2007; Sauna et al., 2007; Senior et al., 1995). For eukaryotic
ABC exporters, the catalytic cycle has the following steps: substrate
binding to the inward face of TDMs, binding of two ATP molecules to
NBDs, dimerization of the NBDs, conformational change of TMDs from
inward facing to outward facing, ATP hydrolysis, release of substrate
from the outward face of TMDs and of ADP and phosphate from NBDs
and NBD dissociation (Wilkens, 2015). However, it is likely that not all
ATP transporters function based on the very same mechanisms (Locher,
2016): lipid transporters as PglK and ABCA1 have been proposed to
have only outwardly-facing conformations, and possibly a lateral access
mechanism (Perez et al., 2015; Qian et al., 2017). The substrate-binding
site is rather poorly defined in ABC exporters, and multiple and flexible
sites can be present, therefore making them multidrug transporters and
generating overlapping exporting function among them.

ABC transporters and MDR

Enhanced efflux of chemotherapeutic drugs by at least 15 ABC ex-
porters has been shown to mediate MDR in cancer cells (Fletcher et al.,
2016; Li et al., 2016b; Szakacs et al., 2006). The most important human
ABC transporter involved in drug disposition and in MDR is ABCB1
(also known as MDR1, P-glycoprotein, P-gp), while an important role is
recognized also for ABCG2 (Breast cancer resistance protein, BRCP) and
for ABCC1 (Multidrug Resistance Protein 1, MRP1), ABC exporters with
broad substrate and inhibitor specificity, and wide tissue and cellular
distribution, especially in physiological epithelial/endothelial barriers,
partially overlapping with those of ABCB1 (Fletcher et al., 2016; Mao
and Unadkat, 2015; Natarajan et al., 2012; Zhang et al., 2015).

ABCB1 (MDR1, P-glycoprotein, P-gp)

ABCB1 has been discovered more than 40 years ago (Juliano and
Ling, 1976). In humans, the ABCB1 and ABCB4 genes, originating from
an endoduplication event, are located adjacent to each other on the
long arm of chromosome 7 (7q21) and encode two similar proteins
(78% identity) (Callen et al., 1987; Chin et al., 1989). In rodents, a
further duplication gave rise to the genes ABCB1a and ABCB1b, with
largely overlapping substrate specificities.

ABCB1 structure and function

ABCB1 is expressed at low levels in most human and rodent tissues,
while high expression levels are present in the apical surface of epi-
thelial cells, such as intestine, liver bile ductile, kidney proximal tu-
bules, pancreatic ductules, adrenal gland, placenta, testis (blood-testis
barrier) and brain capillaries (blood-brain barrier), oriented towards
the lumen or the blood (Chin et al., 1989; Cordon-Cardo et al., 1990;
Cordon-Cardo et al., 1989; Fojo et al., 1987; Schinkel, 1999; Thiebaut
et al., 1987).

To characterize the function of ABCB1, knockout mice were gen-
erated harboring a disruption of the ABCB1a gene, the ABCB1b gene, or
both the ABCB1a and ABCB1b genes together (Schinkel et al., 1997;
Schinkel et al., 1994). These three mouse strains were healthy and
fertile, with no abnormalities in anatomy, lifespan and in many other
parameters, with respect to wild type mice under normal conditions;
however, they displayed drastic pharmacokinetic differences upon ad-
ministration of drugs, with marked reduction of the intestinal, hepa-
tobiliary and urinary excretion of drugs (Schinkel et al., 1997; Schinkel
et al., 1994; Smit et al., 1998; Sparreboom et al., 1997; van Asperen
et al., 1996; van Asperen et al., 1999). Altered pharmacokinetics and
increased accumulation of paclitaxel, doxorubicin and vinblastine, i.e.
some of the most important chemotherapeutic drugs, administered

Fig. 2. Structure of a Nucleotide Binding Domain (NBD) and a
Transmembrane Domain (TMD) of ABCB1 (PDB code: 4M2T). A. Structure
of NBD: domains and highly conserved sequence motifs are color-coded:
Green, α-helical domain; Gray, regulatory C-terminal domain; Red, A-
loop; Magenta, Walker A; Orange, Walker B; Blue, D-loop; Green, H-loop;
Cyan, ABC motif; Yellow, Q-loop. B: Structure of ABCB1 TMD dimer, view
along the two-fold symmetry axis from the inward side (the NBD domain is
not represented): the two TMDs of an ABC transporter are colored in blue
and orange. α-helices are numbered TMD1-12. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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against a number of cancers, was demonstrated in these mice
(Sparreboom et al., 1997; van Asperen et al., 1996; van Asperen et al.,
1999). In addition, ivermectin, loperamide, doxorubicin, digoxin, vin-
blastine, paclitaxel, erythromycin and many other drugs, which in wild
type mice (and in humans) do not accumulate in the brain and are not
neurotoxic, penetrate the blood-brain barrier and have serious neuro-
toxic effects in the CNS of ABCB1(-/-) mice (Schinkel et al., 1994;
Schinkel et al., 1996; Schinkel et al., 1995; Schuetz et al., 1998; van
Asperen et al., 1997).

Thus, both localization and characterization indicate an important
role of ABCB1 in the protection of the brain, the testis and of the fetus
from toxic xenobiotics. ABCB1 is responsible for the extrusion of xe-
nobiotics and metabolites into the gut lumen, into the bile and urine,
thus reducing their absorption, toxicity and bioavailability and hence
making a major contribution to their ADME (absorption, distribution,
metabolism and excretion). ABCB1 possibly plays a role in the transport
of endogenous molecules and metabolites (such as phospholipids, gly-
colipids, platelet-activating factors, amyloid β-peptides, and cytokines)
and in exporting hormones such as aldosterone and progesterone, from
the adrenal gland and the uterine epithelium (Sharom, 2008, 2011;
Silva et al., 2015).

Several crystal structures of eukaryotic ABCB1 proteins from mouse,
Cyanidioschyzon merolae and Caenorhabditis elegans have been reported
(Aller et al., 2009; Esser et al., 2017; Jin et al., 2012; Kodan et al., 2014;
Li et al., 2014; Szewczyk et al., 2015; Verhalen et al., 2017; Ward et al.,
2013; Wen et al., 2013), and showed that the overall structure of
ABCB1 is similar to that of other ABC transporters (Fig. 3). Since ABCB1
is expressed as one gene product containing both halves, similar but not
identical, its structure is intrinsically asymmetric (Wen et al., 2013).
Structures of mouse ABCB1a (87% identical to human ABCB1) in the
apo-form, of mutant forms and in the presence of rationally designed
ligands yielded insight on the “polyspecificity” of ABCB1 in substrate
interactions, on mechanism of ligand entry and on atomistic models of
ATP-coupled transport (Fig. 4). All structures belong to a wide range of
inward-facing conformations, with highly flexible TMDs and various
distances between the two NBDs, which can determine opening and
closing motion of the ABC exporter and thereby a number of possible
binding sites due to the exposure of several flexible hydrophobic sur-
faces in the vicinity of the membrane (Esser et al., 2017; Szewczyk
et al., 2015; Verhalen et al., 2017; Ward et al., 2013). A recent work by
McHaurab and colleagues used double electron–electron resonance and
molecular dynamics simulations to model ABCB1 in the outward-facing
conformation and to model energy-dependent movement and substrate
efflux (Fig. 4). In this model, most ABCB1 molecules in the cell are
inward-facing, with dissociated and fully ATP-bound NBDs (Fig. 4, step
1), ready to bind the substrate with its high-affinity substrate pocket
exposed to the cytoplasmic leaflet of the membrane (Fig. 4, step 2);
drug extrusion requires a two-stage hydrolysis (Fig. 4, steps 3 and 4),
and substrate release outside the cell by outwardly-facing ABCB1, a

conformation with lower affinity for the substrate (Verhalen et al.,
2017).

ABCB1 expression in cancers and MDR

In various cancer cell lines of distinct tissue lineage, ABCB1 ex-
pression increases upon repeated drug treatment cycles with various
chemotherapeutic drugs, rendering them MDR (Juliano and Ling, 1976;
Ueda et al., 1987a; Assaraf et al., 1989a, 1989b). In addition, many
early studies showed high overexpression of ABCB1 in colon, kidney,
ovary, adrenocortical and hepatocellular tumors (Bourhis et al., 1989;
Fojo et al., 1987; Goldstein et al., 1989; Pirker et al., 1989). Direct
association between ABCB1 expression levels, drug resistance and poor
prognosis have been found in acute myelogenous leukemia (AML)
(Broxterman et al., 1999; Dorr et al., 2001; Grogan et al., 1993; Han
et al., 2000; Leith et al., 1999; Michieli et al., 1999; van der Kolk et al.,
2000; Zhou et al., 1995), breast cancer (Burger et al., 2003; Dexter

Fig. 4. Mechanism of action of ABCB1. Top-left: inward-facing (IF), ATP-bound ABCB1
with non-dimerized NBDs; top-right: upon substrate binding, NBDs dimerize; bottom-
right: hydrolysis of the first ATP occurs, and a doubly occluded (OO) transition state is
formed; bottom-left: after hydrolysis of the second ATP, an outward-facing (OF) transition
state is formed, and release of the substrate outside the cell occurs (Verhalen et al., 2017).

Fig. 3. Structures of ABC exporters in outward-facing and inward-facing
conformations. Left: structure of Staphylococcus aureus SAV1866 in com-
plex with ADP (PDB code: 2HYD), in outward-facing conformation. Right:
Structure of mouse ABCB1 (MDR1) in inward-facing conformation, in
complex with two molecules of an analog of dendroamide-A (PDB code:
4M2T) (Dawson and Locher, 2006; Li et al., 2014).
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et al., 1998; Kao et al., 2001; Nooter et al., 1997; Sun et al., 2000; Trock
et al., 1997; Vecchio et al., 1997), osteosarcoma (Chan et al., 1997),
bladder cancer (Clifford et al., 1996; Nakagawa et al., 1997; Park et al.,
1994; Tada et al., 2002), ovarian cancer (van der Zee et al., 1995),
central nervous system (Abe et al., 1998; Perri et al., 2001) and other
tumors and diseases.

In the Guidance Compliance Regulatory Information for the eva-
luation of drug interactions (https://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.
pdf), the US Food and Drug Administration (FDA) recommends that all
investigational drugs should be evaluated in vitro to determine whether
or not they are transport substrates of ABCB1 (P-glycoprotein) or
ABCG2 (BCRP); the International Transporter Consortium recommends
in vitro analysis of interaction with ABCB1 as a major bottleneck for
filing a new drug application (International Transporter et al., 2010).

ABCB1 mutations and polymorphism

In the last years, a number of mutations and polymorphisms in the
human ABCB1 gene have been described, although sometimes with
conflicting results (Schwab et al., 2003; Wolking et al., 2015). The NCBI
dbSNP single nucleotide polymorphisms database currently (September
11th, 2017) lists 24289 nucleotide variants, including 1563 coding
sequence variants (639 missense and 924 synonymous variants).
Among the identified single nucleotide polymorphisms (SNPs), the
dbSNP database counts only 1 pathogenic SNP, i.e. c.554G > T,
yielding the G185V mutation (Choi et al., 1988; Safa et al., 1990). In
addition, at least 14 SNPs, occurring only at low allele frequencies of
<0.01, are reported to be associated with alterations in ABCB1 func-
tions (Wolf et al., 2011), concerning pharmacokinetics, treatment re-
sponse and drug-related toxicity; the analysis of the literature show that
no conclusive results are available (Wolking et al., 2015).

Epigenetic regulation of ABCB1 expression in drug response

Deregulation of epigenetic programs, in terms of DNA methylation
and post-transcriptional regulation of histone proteins, cooperates with
genetic alterations towards the establishment and progression of cancer
as well as the development of the classical MDR phenotype mediated by
ABCB1 (Baker et al., 2005; Chen et al., 2005; Scotto, 2003). The binding
of specific transcription factors to their DNA-response elements located
in ‘distal’ and ‘proximal’ promoter regions of the ABCB1 gene (Ueda
et al., 1987b), and the methylation/demethylation status of this
genomic locus, determine the repression or transactivation of ABCB1
expression, associated with survival and treatment response (Arrigoni
et al., 2016; Dejeux et al., 2010; Mencalha et al., 2013; Reed et al.,
2010). In AML for example, an inverse correlation between methylation
and ABCB1 expression in clinical samples has been described; the hy-
pomethylated status of ABCB1 promoter region was proposed as a ne-
cessary condition for ABCB1 gene overexpression and for the estab-
lishment of P-glycoprotein-mediated MDR in AML patients (Nakayama
et al., 1998). In bladder cancer as well, the degree of methylation in the
ABCB1 promoter region appears to be closely associated with ABCB1
gene expression and the emergence of the MDR phenotype (Tada et al.,
2000). In breast cancer, the acquisition of drug resistance appears to be
related to the methylation of the ABCB1 downstream promoter ac-
companied by a regional genomic amplification of a locus in chromo-
some 7 containing the ABCB1 gene and its ABCB4 neighbor gene (Reed
et al., 2008).

Recently, also the histone methylation and acetylation, occurring on
lysine residues within histone tails, are emerging as relevant players for
the epigenetic regulation of ABCB1 gene expression and chemotherapy
drug response (Henrique et al., 2013). Huo et al., evidenced that
transcriptional activation of ABCB1 gene expression is accompanied by
increased methylation on lysine 4 of histone H3 (H3K4), and that the
histone methyltransferase MLL1 is involved in this regulation. In this

respect, knockdown of MLL1 decreased the constitutive expression of
ABCB1, increased cellular retention of ABCB1 substrates, and sensitized
cancer cells to chemotherapeutic agents (Huo et al., 2010). An induc-
tion of H3K4 methylation within the coding regions of the ABCB1 gene
was also evidenced after treatment with the histone deacetylase
(HDAC) inhibitor Trichostatin A (TSA), resulting in upregulation of
ABCB1 (Baker et al., 2005; Jin and Scotto, 1998). Interestingly, it was
also shown that TSA treatment induced an increase in ABCB1 expres-
sion in drug-sensitive small cell lung carcinoma (SCLC) cells, but
strongly decreased its expression in drug-resistant cells through a
transcriptional mechanism, independently from promoter methylation
(El-Khoury et al., 2007). Moreover, in colon and pancreatic cancer cell
lines, it was demonstrated that the increase in ABCB1 mRNA expression
observed after TSA treatment is not associated with an active P-gp
protein expression, suggesting that well tolerated HDAC inhibitors may
represent a potential therapeutic avenue to potentiate the effects of
anti-tumor drugs that are P-glycoprotein substrates (Balaguer et al.,
2012). In T-cell leukemia, the transcriptional control of ABCB1 ex-
pression is achieved by two molecular mechanisms: when densely
methylated, ABCB1 is transcriptionally silent via a mechanism that is
TSA independent. TSA induced significant acetylation of histones H3
and H4 but did not activate transcription, whereas 5-azacytidine, in-
ducing DNA demethylation, lead to partial relief of transcriptional re-
pression. ABCB1 expression was significantly increased following the
combination of 5-azacytidine and TSA treatments suggesting that, upon
demethylation, activation of ABCB1 is mediated by HDAC (El-Osta
et al., 2002). Of note, the use of depsipeptide, an HDAC inhibitor, in
combination with retinoic acid (RA) treatment, in Acute Promyelocytic
Leukemia (APL) cells, prior to doxorubicin treatment, prevents doxor-
ubicin-induced apoptosis in NB4 APL cells, by inducing the ABCB1 gene
and ABCB1 expression, partially through CCAAT box-associated histone
acetylation (Tabe et al., 2006). On the contrary, combined treatment of
depsipeptide and RA following doxorubicin treatment, lead to en-
hanced doxorubicin-induced apoptosis. These results underline the
critical importance of modulation of ABCB1 expression by the use of
epigenetics modulating drugs, and indicate that this is a critical point to
take into consideration for the future design of clinical trials that
combine epigenetics modulators and chemotherapeutic agents.

Post-transcriptional regulation of ABCB1 expression by microRNAs in drug
response

miRNAs are small (≈22 nucleotides long) noncoding RNAs which
are evolutionary conserved and play a key role in the regulation of gene
expression; miRNAs are significantly deregulated in cancer, and each
cancer phenotype is defined and characterized by a unique miRNA
signature, highlighting miRNAs as relevant molecules for cancer diag-
nostics and possible therapeutic interventions (Blandino et al., 2014).
miRNAs can act by targeting a spectrum of distinct players, involved in
the establishment of cancer MDR (Zhang and Wang, 2017). Of note,
since many drugs need the expression of specific genes to exert their
antineoplastic activity, miRNAs which affect the post-transcriptional
regulation of pharmacogenomics-related genes, such as those re-
sponsible for drug metabolism or transport as well as those directly
targeted by the drugs, are also emerging as potent regulators of drug
efficacy (Rukov and Shomron, 2011). Several miRNAs are involved in
different regulatory pathways that confer chemoresistance to cancer
cells, as the ID4-miR-9*-SOX2-ABCC3/ABCC6 pathway which imparts
stemness potential and chemoresistance in glioma cells (Jeon et al.,
2011), and the miR27b-CCNG1-p53-miR-508-5p axis which regulates
MDR in gastric cancer (Shang et al., 2016).

The identification of the expression levels of miRNAs targeting
genes involved in the binding or in the transport of chemotherapeutic
drugs may be extremely useful to identify the possible acquisition of
drug resistance during cancer treatment (Yamamoto et al., 2011). For
example, Pan et al. found that miR-328, which targets the ABCG2 gene,
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encoding for a MDR efflux transporter of the ABC superfamily, may
affect the transport of the anticancer drug mitoxantrone (MX) across the
plasma membrane and the sensitivity of MCF-7 breast cancer cells to
this anthracycline drug (Pan et al., 2009). Also miR-345 and miR-7,
targeting ABCC1 gene, which encodes for the human multidrug re-
sistance-associated protein 1 (MRP1), were associated with acquired
resistance of MCF-7 breast cancer cells to cisplatin (Pogribny et al.,
2010).

Moreover, different miRNAs were described with a functional role
in the regulation of the expression and activity of ABCB1, the founding
member of the ABC superfamily of multidrug efflux transporters that is
a dominant pump responsible for MDR (Garofalo and Croce, 2013; Li
et al., 2016b; Livney and Assaraf, 2013; Wijdeven et al., 2016). As
described above, the plasma membrane overexpression of ABCB1 in
cancer cells leads to an increased drug efflux and impairs the
achievement of an intracellular cytotoxic drug concentration. Of note,
various miRNAs targeting this ABC superfamily member were described
to be involved in the regulation of drug efflux activity of this trans-
porter as well as in drug response (Geretto et al., 2017; Lopes-Rodrigues
et al., 2014). It has been shown that 3′-UTR variants of ABCB1 with
shortened length may be synthesized during the acquisition of drug
resistance and this may lead to the loss of miRNA binding sites and
hence alleviating this miRNA-based repression of ABCB1 expression
(Bruhn et al., 2016). However, altered levels of miRNAs affecting
ABCB1 expression were also recently described. For example, in human
intestinal epithelial cells miR-145 negatively regulates the expression
and function of ABCB1 through direct interaction with its mRNA 3′-
UTR (Ikemura et al., 2013), while in ovarian cancer the development of
cisplatin resistance was related to the up-regulation of miR-130a, re-
sulting in ABCB1-mediated MDR (Li et al., 2015; Yang et al., 2012). By
targeting ABCB1, miR-873 and miR-595 also contribute to the regula-
tion of drug resistance and the activity of cisplatin in inhibiting tumor
growth in ovarian cancer (Tian et al., 2016; Wu et al., 2016). Inter-
estingly, miR-27a and miR-451 induce the activation of ABCB1 ex-
pression and their modulation with antagomirs enhances the sensitivity
of ovarian cancer cells via enhanced intracellular accumulation of
doxorubicin (Zhu et al., 2008). In contrast, in colorectal cancer, re-
storation of miR-451 decreases ABCB1 expression and results in sensi-
tization to irinotecan (Bitarte et al., 2011); whereas, up-regulation of
miR-27a in hepatocellular carcinoma cells decreased the ABCB1 ex-
pression via FZD7/β-catenin signaling pathway, enhancing the sensi-
tivity of these cells to 5-fluorouracil resulting in 5-fluorouracil-induced
apoptosis (Chen et al., 2013b). Moreover, in breast cancer cells as well,
miR-451 was reported to mediate down-regulation of ABCB1 gene ex-
pression, resulting in increased sensitivity of tMCF-7 breast cancer cells
to doxorubicin (Kovalchuk et al., 2008). In hepatocellular carcinoma
cells, a novel role for miR-491-3p was identified resulting in ABCB1-
mediated MDR, suggesting the potential application of miR-491-3p as a
therapeutic strategy for repression of P-glycoprotein-dependent MDR
tumors (Zhao et al., 2017). In gastric cancer, the overexpression of miR-
508-5p, targeting the 3′-UTR of ABCB1, was sufficient to reverse MDR
in cancer cells to multiple chemotherapeutic drugs, both in vitro and in
vivo, and, interestingly, miR-508-5p might act as a prognostic factor for
overall survival in this tumor (Shang et al., 2014). In neuroblastoma
cells, it was shown that epigenetic silencing of miR-137 in doxorubicin-
resistant cells contributes to overexpression of the constitutive an-
drostane receptor (CAR) and, in turn, ABCB1, and that treatment with
the 5-azacytidine, a methylation inhibitor, increased miR-137 expres-
sion and sensitized doxorubicin-resistant neuroblastoma cells to this
anthracycline (Takwi et al., 2014). Moreover, the hyper-methylation of
the promoter region of miR-129-5p is recently gaining relevance in the
development of drug resistance in gastric cancer cells and this miRNA,
by targeting MDR-related ABC transporters as ABCB1, was proposed as
a potential therapeutic target to enhance drug sensitivity of gastric
cancers (Wu et al., 2014). In gastric cancer, it was also evidenced that
miR-129 was able to reverse cisplatin-resistance through repression of

ABCB1 gene expression and activation of the caspase-mediated intrinsic
apoptotic pathway (Lu et al., 2017). Of note, the nanoparticles-medi-
ated co-delivery of miR-129-5p and doxorubicin significantly increased
miR-129-5p expression in doxorubicin-resistant MCF-7 breast cancer
cells, which effectively overcame MDR achieving a 100-fold increase in
ABCB1 gene expression, thereby increasing intracellular drug accu-
mulation and cytotoxicity in this tumor cell line model (Yi et al., 2016).
This synergistic therapeutic option was also recently reported for miR-
375 in hepatocellular carcinoma (Fan et al., 2017). Moreover, in breast
cancer it was further reported that the overexpression of miR-298 as
well results in down-regulation of ABCB1 gene expression, increasing
nuclear accumulation of doxorubicin and cytotoxicity in doxorubicin-
resistant cells (Bao et al., 2012). In mouse leukemia cells it was reported
that the restored expression of miR-381 or miR-495 in doxorubicin-
resistant K562 cells correlates with a decreased ABCB1 gene expression
and with an increased drug uptake by these cells (Xu et al., 2013). More
recently, in the same cellular system, restoration of miR-9 expression
was also able to reverse cancer cell drug resistance in vitro and sensi-
tized tumors to chemotherapy in vivo by targeted repression of ABCB1
gene expression (Li et al., 2017). In addition, in gallbladder cancer,
miR-218-5p enhanced sensitivity of gemcitabine by abolishing PRKCE-
induced up-regulation of ABCB1 (Wang et al., 2017). Table 1 shows
miRNAs acting on ABCB1 in MDR (vs. non-MDR) tumors.

Transport substrates of ABCB1

ABCB1 is able to bind and extrude out of cells a plethora of che-
mically, structurally and pharmaceutically distinct compounds in-
cluding drugs used as anti-cancer chemotherapeutics, inflammation,
immunosuppression, infection, allergy, hypertension, and arrhythmia
(Table 2); more than one thousand compounds have been described as
ABCB1 substrates (Didziapetris et al., 2003). The high flexibility, fuz-
ziness and complexity of drug substrate binding sites of ABCB1 (Esser
et al., 2017; Szewczyk et al., 2015; Verhalen et al., 2017; Ward et al.,
2013) explain the wide number of drug classes of these ABCB1 sub-
strates, which include small molecules, as cations, amino acids and
carbohydrates, larger molecules, as chemotherapeutic drugs, iono-
phores, fluorescent dyes and steroids and larger molecules such as
peptides, polysaccharides and proteins (Borgnia et al., 1996;
Didziapetris et al., 2003; Eytan et al., 1994; Sharom, 2011; Silva et al.,
2015; Zhou, 2008). Many of these substrates are relatively hydrophobic
and weakly amphipathic, typically contain aromatic rings and a posi-
tively charged nitrogen, and often their binding occurs with KD values
of 10 μM–1 mM (Morrissey et al., 2012). This substrate “poly-
specificity” is crucial for ABCB1 to exert its role as a xenobiotics efflux
pump, able to protect cells from a high number of cytotoxicants. In
addition, substrates binding to ABCB1 partially overlap to those bound
by other ABC transporters, such as ABCC1, ABCC2 and ABCG2, and by
cytochrome P450 3A enzymes, in particular CYP3A4: a coordinate in-
terplay between these proteins can operate to protect cells as a barrier
in the bioavailability of drugs, especially when orally administered
(Cascorbi, 2006; Cummins et al., 2002; Kim et al., 1999).

ABCB1 transport inhibitors

The induction of ABCB1 upon exposure to cancer chemother-
apeutics is an important cause of MDR; conversely, inhibition of ABCB1
transport is one the most studied clinical strategies to counteract MDR,
with the aim to interfere with chemotherapeutic drug efflux, thereby
increasing their accumulation and hence their cytotoxic effect in cancer
cells. Mechanistically, ABCB1 inhibitors may exert their activity by
binding and blocking the substrate binding site of the transporter, ei-
ther in competitive, non-competitive or allosteric fashion, by interfering
with ATP hydrolysis, by binding the transporter in site independent of
the drug binding site which allosterically alters the intact structure and
function of ABCB1, or by altering the integrity and functionality of cell
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Table 1
miRNA acting on ABCB1 in MDR (vs. non-MDR) cancers.

miRNA Direct expression ABCB1 target Effect on Cancer

expression drug resistance

miR-9 ↓ ABCB1 ↑ ↑ Adriamycin MDR chronic myelogenous leukemia vs. non-MDR
miR-27a ↑ ? ↑ ↑ Doxorubicin, vinblastine MDR ovarian cancer vs. non-MDR

↓ FZD7/β-catenin ↑ ↑ 5-fluorouracil MDR hepatocellular carcinoma vs. non-MDR
miR-129 ↓ ABCB1 ↑ ↑ Cisplatin MDR gastric cancer vs. non-MDR
miR-129-5p ↓ ABCB1 ↑ ↑ Vincristine, 5-fluorouracil, cisplatin MDR gastric cancer vs. non-MDR

↓ ABCB1, CDK6 ↑ ↑ Doxorubicin MDR breast cancer vs. non-MDR
miR-130a ↓ ABCB1 ↑ ↑ Cisplatin MDR ovarian cancer vs. non-MDR
miR-137 ↓ CAR ↑ ↑ Doxorubicin MDR neuroblastoma vs. non-MDR
miR-145 ↓ ABCB1 ↑ Intestinal epithelial cells vs. ischemia-reperfusion

cells
miR-218-5p ↓ PRKCE ↑ ↑ Gemcitabine Gallbladder cancer vs. non cancer
miR-298 ↓ ABCB1 ↑ ↑ Doxorubicin MDR breast cancer vs. non-MDR
miR-375 ↓ ABCB1, AEG1, YAP1,

ATG7
↑ ↑ Doxorubicin MDR hepatocellular carcinoma vs. non-MDR

miR-381 ↓ ABCB1 ↑ ↑ Doxorubicin MDR chronic myelogenous leukemia vs. non-MDR
miR-451 ↑ ? ↑ ↑ Doxorubicin MDR ovarian cancer vs. non-MDR

↓ COX2/Wnt ↑ ↑ Irinotecan MDR colonspheres vs. non-MDR
↓ ABCB1 ↑ ↑ Doxorubicin MDR breast cancer vs. non-MDR

miR-491-3p ↓ ABCB1, Sp3 ↑ ↑ Doxorubicin, vinblastine MDR hepatocellular carcinoma vs. non-MDR
miR-495 ↓ ABCB1 ↑ ↑ Doxorubicin MDR chronic myelogenous leukemia vs. non-MDR
miR-508-5p ↓ ABCB1, ZNRD1 ↑ ↑ Adriamycin, Vincristine, 5-fluorouracil,

cisplatin
MDR gastric cancer vs. non-MDR

miR-595 ↓ ABCB1 ↑ ↑ Cisplatin MDR ovarian cancer vs. non-MDR
miR-873 ↓ ABCB1 ↑ ↑ Cisplatin MDR ovarian cancer vs. non-MDR

Table 2
Classes of ABCB1 substrates.
Data from: Didziapetris et al. (2003), Sharom (2011), Silva et al. (2015), Zhou (2008).

Classes of ABCB1 substrates

Substrate class Examples

Anti-arrhythmics Digoxin, quinidine, verapamil.
Antibiotics (antimicrobial drugs) Clarithromycin, doxycycline, erythromycin, gramicidin A, grepafloxacin, itraconazole, ketoconazole, levofloxacin, rifampicin,

sparfloxacin, tetracycline, valinomycin.
Anticancer chemotherapeutic drugs Alkylating agents: chlorambucil, cisplatin

Antibiotics: actinomycines (actinomycin D), anthracyclines (daunorubicin, doxorubicin), mitoxantrone, mytomicin C.
Antimetabolites: cytarabine, 5-fluorouracil, hydroxyurea, methotrexate.
Camptothecins: irinotecan, topotecan.
Epidermal growth factor receptor inhibitors: erlotinib, gefitinib
Epipodophyllotoxins: etoposide, teniposide
Taxanes: docetaxel, paclitaxel.
Tyrosine kinase inhibitors: imatinib, nilotinib
Vinca alkaloids: vinblastine, vincristine
Others: bisantrene, tamoxifen.

Anticonvulsants and anti-epileptics Carbamazepine, phenobarbital, phenytoin, topiramate.
Antidepressants Amitriptyline, doxepin, nortriptyline.
Anti-diarrheal drugs Loperamide (opioid), octreotide
Antiemetics Domperidone, ondansetron.
Antigout drugs Colchicine
Antihelmintics Ivermectin
Antihistamine Fexofenadine, terfenadine.
Anti-HIV Amprenavir, indinavir, nelfinavir, ritonavir, saquinavir.
Antihypertensives Celiprolol, debrisoquine, losartan, prazosin, reserpine, talinolol.
Calcium channel blockers Azidopine, diltiazem, nicardipine nifedipine, verapamil.
Calmodulin antagonists trans-flupentixol, trifluoperazine.
Cardiac glycosides Digitoxin, digoxin.
Cyclic peptides Beauvericin, valspodar (PSC-833).
Fluorescent dyes Calcein AM, Hoechst 33342, Rhodamine 123.
Histamine H2-receptor antagonists Cimetidine, ranitidine
Hypocholesterolizing drugs Lovastatin, simvastatin
Immunosuppressive agents Cyclosporin A, sirolimus, tacrolimus, valspodar (PSC-833)
Linear peptides ALLN (Acetyl-leucyl-leucyl-norleucine), leupeptin, pepstatin A
Neuromuscular blocking agents Vecuronium
Natural products Curcumin, Flavonoids.
Neuroleptics Chlorpromazine, phenothiazine
Pesticides Endosulfan, methylparathion, paraquat.
Steroid hormones Aldosterone, corticosterone, cortisol, dexamethasone, estradiol, methylprednisolone.
Others Amino acids, bilirubin, carbohydrates, cations, polysaccharides
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membrane lipids, or by altering plasma membrane fluidity (Drori et al.,
1995; Shapiro and Ling, 1997; Silva et al., 2015; Varma et al., 2003).

Classification into four generations of ABCB1 inhibitors according to
their potency, selectivity and drug–drug interaction potential (Palmeira
et al., 2012a), rather than to their chronology of discovery and char-
acterization, is useful (Table 3). The first generation of ABCB1 transport
inhibitors comprises classical inhibitors such as the founding member
verapamil as well as cyclosporine A and all compounds which were
previously described as having other therapeutic applications. The first
identified ABCB1 transport inhibitor has been the calcium channel
blocker verapamil, able to increase the intracellular accumulation of
chemotherapeutic drugs as doxorubicin, vincristine and vinblastine by
competing with these drugs (Miller et al., 1991; Tsuruo et al., 1981).
Verapamil, as many other of first-generation ABCB1 substrate, and
presumably acts by competing for efflux with other ABCB1 substrates
(Varma et al., 2003; Yusa and Tsuruo, 1989). Verapamil sensitizes
cancer cells to several anticancer drugs, such as doxorubicin, increasing

their cytotoxic activity (Futscher et al., 1996); many clinical studies on
the use of verapamil, alone and in combination regimens, against var-
ious cancers and other diseases have been carried out, and some are still
ongoing (https://clinicaltrials.gov/). A number of “already-in-clinical-
use” ABCB1 inhibitors have been discovered, belonging to several
classes, such as calcium channels blockers (e.g., verapamil), anti-ma-
larial drugs (e.g., quinine), immunosuppressants (e.g., cyclosporine A),
anesthetics (e.g., chloroform), antibiotics (e.g., erythromycin, and cef-
triaxone), antifungal drugs (e.g., ketoconazole), antivirals (e.g., nelfi-
navir, and saquinavir), CNS stimulators or anti-depressants (e.g., caf-
feine, nicotine, and chlorpromazine), as well as steroids (e.g., cortisol,
and progesterone). In addition, some ABCB1 transport inhibitors are
themselves anticancer drugs, such as tamoxifen, and tyrosine kinase
inhibitors as erlotinib and lapatinib (Table 3) (Palmeira et al., 2012a;
Sharom, 2011; Silva et al., 2015; Zhou, 2008). Often, the clinical use of
these ABCB1 inhibitors is hampered by their intrinsic toxicity, because
high concentrations of these drugs are needed to inhibit ABCB1 efflux

Table 3
Classes of ABCB1 inhibitors.
Data from Palmeira et al. (2012a), Silva et al. (2015).

Classes of ABCB1 inhibitors

Inhibitor class Examples

First generation
Analgesics Meperidine, pentazocine
Anesthetic drugs Benzyl alcohol, chloroform, diethyl ether, propofol
Antibiotics Azithromycin, bafilomycin, brefeldin A, cefoperazone, ceftriaxone, clarithromycin, erythromycin, nigericin, salinomycin, valinomycin
Anticancer drugs Antiandrogen; bicalutamide, mitotane

Estrogen receptor antagonists: tamoxifen
Farnesyl trasferase inhibitors: lonafarnib, tipifarnib
Tyrosine kinase inhibitors: erlotinib, gefitinib, lapatinib

Antifungal drugs Aureobasidin A, dihydroptychantol A, econazole, itraconazole, ketoconazole
Antihistaminic drugs Astemizole, azelastine, benzquinamide, terfenadine, tesmilifene
Anti-inflammatory drugs Zomepirac, indomethacin, SC236, curcumin, ibuprofen, NS-398
Antidepressants Amoxapine, loxapine, sertraline, paroxetine, fluoxetine
Antiprotozoal drugs Hycanthone, metronidazole, monensin, quinine
Antiviral drugs Concanamycin A, nelfinavir, ritonavir, saquinavir
Anxiolytics Midazolam
Cardiac drugs Antiarrhythmics: amiodarone, propafenone, quinidine

Calcium channel blockers: amiodarone, bepridil, deverapamil, diltiazem, emopamil, felodipine, isradipine, lomerizine, mibefradil, nicardipine,
nifedipine, niguldipine, nimodipine, nitrendipine, propaphenone, quinidine, tetrandrine, verapamil.
Antiplatelet drug: dipyridamole
Antihypertensives: carvedilol, doxazosin, prazosin, reserpine.

CNS stimulators Amoxapine, caffeine, cotinine, loxapine, nicotine, pentoxifylline, sertraline
CNS depressants Chloropromazine, trans-flupentixol, haloperidol, perospirone, perphenazine, prochloropromazine, trifluoperazine
Cholesterol-lowering drugs Atorvastatin,
Immunosuppressant drugs Cyclosporin A, tacrolimus, sirolimus
Phosphodiesterase inhibitors Vardenafil
Steroid hormones Cortisol, medroxiprogesterone, methylprednisolone, mifepristone, progesterone, SB4723, SB4769, tirilazad, U-74389F
Others Bromocriptine, disulfiram, methadone, tetrabenazine

Second generation BIBW22BS, biricodar (VX 710), CGP 42700, cinchonine, dexverapamil, dexniguldipine, dofequidar (MS-209), hydro-cinchonine, KR-30031,
MM36, PAK-104P, quinine homodimer Q2, RO44-5912, S9788, SB-RA-31012 (tRA96023), stipiamide homodimer, timcodar (VX-853),
toremifene, valspodar (PSC 833), WK-X-34

Third generation Annamycin, CBT-1, DP7, elacridar (GF120918), laniquidar (R101933), mitotane, ontogen (OC144093), PGP-4008, tariquidar (XR9576),
zosuquidar (LY335979),

Fourth generation
Natural products Alkaloids: ellipticine, pervilleine F

Cannabinoids: cannabidiol
Coumarins: cnidiadin, conferone, DCK, praeruptorin A, rivulobirin A
Diterpenes: euphodendroidin D, jolkinol B, pepluanin A, portlanquinol
Flavonoids: baicalein heptamethoxyflavone, nobiletin, quercetin, sinensetin, tangeretin
Ginsenosides: 20S-ginsenoside
Lignans: nirtetralin, schisandrin A, silibinin
Polyenes: pentadeca-(8,13)-dien-11-yn-2-one
Sesquiterpenes: dihydro-β-agarofuransesquiterpenes
Taccalonolides: taccalonolides A
Triterpenes: oleanolic acid, sipholenol A, sipholenone E, uvaol

Peptidomimetics Peptide 15, reversin 121, reversin 205, XR9051
Surfactants and Lipids Cremophor EL, Nonidet P40 Pluronic P85, poly(ethylene glycol)-300 (PEG-300), Tween-20, Triton X-100,
Dual ligands Dual inhibitors of ABCB1 and tumor cell growth (e.g.: aminated thioxanthones)
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activity, given their low affinity for ABCB1. Further, since many first-
generation ABCB1 inhibitors are also substrates of other transporters
and/or enzymes, pharmacokinetic interactions are complex and some-
times unpredictable (Ambudkar et al., 1999).

Second-generation ABCB1 transport inhibitors were designed from
compounds with another recognized activity, but which were subjected
to structural modifications in order to decrease their principal ther-
apeutic activity and to enhance ABCB1 inhibitory activity, in order to
achieve decreased toxicity and higher potency (Kathawala et al., 2015;
Palmeira et al., 2012a; Silva et al., 2015). These compounds include
derivatives of anticancer, cardiovascular and immunosuppressive
agents (Table 2). For example, valspodar (PSC-833) is a non-im-
munosuppressive derivative of cyclosporine A; although it is 5- to 20-
fold more potent than its parent compound, and also exhibited pro-
mising pre-clinical results, its administration in combination with an-
ticancer drugs inhibits the metabolism and extrusion of such cytotoxic
agents, thus leading to unacceptable toxicity which requires che-
motherapy dose reduction (Advani et al., 2001; Advani et al., 2005;
Bates et al., 2001; Bauer et al., 2005; Chico et al., 2001). In addition,
many of these compounds inhibit cytochrome P450 enzymes, resulting
in unpredictable pharmacokinetic interactions.

Third-generation ABCB1 inhibitors (Table 3) were developed by
using quantitative structure-activity relationships (QSAR) and combi-
natorial chemistry, which specifically and potently inhibit the ABC
exporter at nanomolar concentrations, without affecting cytochrome
P450 enzymes (Coley, 2010; Dantzig et al., 2001; Palmeira et al.,
2012a; Silva et al., 2015). Often these compounds inhibit ABCB1 based
on a non-competitive mechanism; the most promising ones are possibly
tariquidar, elacridar and zosuquidar (Akhtar et al., 2011; Dantzig et al.,
2001; Fox and Bates, 2007; Hyafil et al., 1993; Weidner et al., 2016).
Zosuquidar, a difluoro-cyclopropyl dibenzosuberane derivative, is very
potent, is effective at nanomolar concentrations and has no interaction
with cytochrome P450 and with other drug efflux pumps (Bihorel et al.,
2007; Dantzig et al., 2001; Dantzig et al., 1999; Green et al., 2001;
Kemper et al., 2004). However, third-generation ABCB1 inhibitors have
encountered unexpected toxicity problems, and clinical trials have
yielded modest results (Pusztai et al., 2005; Ruff et al., 2009); for ex-
ample, a phase III trial for the treatment of AML and myelodysplastic
syndrome (MDS) using zosuquidar did not meet its primary endpoint
(Cripe et al., 2010).

Fourth-generation ABCB1 inhibitors (Table 3) include various
classes of compounds, i.e. natural compounds, surfactants and lipids,
peptides and molecules with dual activity (Palmeira et al., 2012a).
Hundreds of natural compounds, obtained from several natural sources,
and belonging to many chemical families, such as alkaloids, flavonoids,
coumarins, resins, saponins and terpenoids (Dewanjee et al., 2017),
have been described thus far as acting on ABC transporters, thereby
offering potential for semi-synthetic modification to produce new
scaffolds which could serve as valuable tools to evade the systemic
toxicities shown by synthetic counterparts. However, reports in the
literature are sometimes contradictory: for example quercetin has been
reported to have opposite effects on ABCB1 and MDR (Critchfield et al.,
1994; Phang et al., 1993; Rodgers and Grant, 1998) perhaps also due to
its inhibition of Cytochrome P-450 enzymes.

Surfactants have complex relationship with ABCB1-dependent drug
efflux and MDR; they alter membrane fluidity, perturbing lipid bilayers,
and drug-membrane partitioning; they also interact with ABCB1, inflict
modifications in secondary and tertiary enzyme structure, inhibit ABC
transporter activity and increase cellular drug accumulation (Regev
et al., 2007; Sharom, 2014; Shieh et al., 2011; Shukla et al., 2017).

Some peptides, such as reversins, are able to potently inhibit ABCB1
in a non-competitive manner (Arnaud et al., 2010); they have been
recently used as conjugate copolymers with anthracyclines to overcome
MDR (Koziolova et al., 2016; Sivak et al., 2017).

Dual ligands, able to simultaneously modulate ABCB1 and other
enzymes, have been recently described. Apart from their ability to

inhibit other ABC transporters shown by several inhibitors, dual ligands
include aminated thioxanthones, targeting ABCB1 and DNA-inter-
calating, and verapamil-like compounds, targeting ABCB1 and NO
synthase (Colabufo et al., 2011; Namanja-Magliano et al., 2017;
Palmeira et al., 2012b).

Other strategies to overcome ABCB1-dependent MDR

Collateral sensitivity (CS) is the ability of compounds to selectively
kill MDR cells over parental cells from which they were derived
(Pluchino et al., 2012). CS agents are MDR-selective compounds that
can act with different mechanisms; one of such mechanisms is apoptosis
via reactive oxygen species (ROS) overproduction following futile ATP
hydrolysis cycles in cells with high-ABCB1 levels, induced by iron-
chelating compounds such as Dp44mT or N-(2-hydroxy acetophenone)
glycinate (Ganguly et al., 2010; Jansson et al., 2010); Dp44mT also acts
by hijacking lysosomal ABCB1 (Jansson et al., 2015; Seebacher et al.,
2016). Other CS-inducing drugs exploit increased sensitivity to bioe-
nergy states: treatment with 2-deoxy-D-glucose, a hexokinase II in-
hibitor, induces apoptosis in MDR cells, that rely on glycolysis for ATP
generation due to the Warburg effect resulting from hypoxia in tumor
microenvironment (Bell et al., 1998; Kaplan et al., 1991).

Another strategy to overcome MDR in ABCB1-overexpressing cells is
the use of nanoparticle delivery of anticancer drugs. Nanoparticles that
are taken up by the cell via endocytosis often bypass and evade the ABC
transporters responsible for efflux of cytotoxic drugs once released into
the cytoplasm (Bar-Zeev et al., 2016; Bar-Zeev et al., 2017; Cerqueira
et al., 2015; Fracasso et al., 2016; Huang et al., 2011; Livney and
Assaraf, 2013; Shapira et al., 2011; Song et al., 2010; Yuan et al., 2016).

Drug inducers of ABCB1 expression

Cells exposed to a P-glycoprotein cytotoxic drug substrate either
upon stepwise selection or single dose exposure, frequently display the
MDR phenotype often due to high overexpression of ABCB1 levels,
frequently due to gene amplification or increased transcription (Assaraf
and Borgnia, 1994; Assaraf et al., 1989a, 1989b; Borgnia et al., 1996;
Fojo et al., 1985; Roninson, 1992; Roninson et al., 1986; Scotto et al.,
1986; Shen et al., 1986).

Many molecules (Table 4), and in particular many chemother-
apeutic drugs, induce ABCB1 overexpression via multiple mechanisms,
involving genomic amplification, upregulation of transcription, mRNA
splicing, transport and stability. Constitutive ABCB1 transcription
mostly depends on a few elements, i.e. two GC-rich regions (GC-boxes),
located from −110 to −103 and from −56 to −45 bases upstream of
the major +1 start site in the human ABCB1 promoter, the CCAAT box
(Y-box), the p53 element and possibly the AP-1 and T-cell factor ele-
ments (see above, for a review see (Silva et al., 2015)). In addition,
stress-induced upregulation of ABCB1 expression occurs, depending on
ROS, heat shock, inflammation and ionizing radiations, acting via a
wealth of transcription factors, such as phosphoinositide 3-kinase
(PI3K)/Akt, extracellular signal-regulated kinases (ERKs; or mitogen-
activated protein kinases, MAPKs), c-Jun NH2-terminal protein kinase
(JNK), protein kinase C (PKC) and nuclear factor-κB (NF-κB), cyclic
adenosine monophosphate responsive element (CRE) and heat-shock
factor (HSF), acting on several pathways in a very complex manner
(Callaghan et al., 2008; Chin et al., 1990; Krishnamurthy et al., 2012;
Labialle et al., 2002; Miyazaki et al., 1992; Nwaozuzu et al., 2003;
Scotto, 2003; Scotto and Egan, 1998; Silva et al., 2015; Vilaboa et al.,
2000; Wong et al., 2010; Zhou and Kuo, 1997).

ABCB1 can be induced by several stimuli, acting on these regulatory
elements, directly or indirectly. Apart from the stress conditions
abovementioned, many molecules are able to induce ABCB1 over-
expression. Table 4 reports a list of ABCB1 inducers, the mode they
have been described to act through, and the level of induction observed
upon cell treatment: these compounds are rather heterogeneous in
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Table 4
Drugs inducing ABCB1 expression.

Drugs inducing ABCB1 expression

Inducer Action

Abacavir 1.5-fold ABCB1 induction upon 15 μM treatment for 72 h in hCMEC/D3 cells (Chan et al., 2013)
N-Acetoxy-2-acetylaminofluorene 3.2-fold ABCB1 expression increase upon 40 μM treatment for 8 h in HepG2 cells (Kuo et al., 2002)
2-Acetyl-aminofluorene 7.5-fold ABCB1 induction upon 100 μM treatment for 24 h in rat hepatoma cells (Deng et al., 2001)
Actinomycin D 2.5-fold ABCB1 mRNA induction upon 400 ng/mL treatment for 72 h in human T lymphoblastoid CCRF-CEM cells (Gekeler et al., 1988)
Aflatoxin B1 ABCB1 mRNA induction upon 3 mg/kg i.p. treatment for 48 h in Fischer rats (Burt and Thorgeirsson, 1988)
Ambrisentan 2.3-fold ABCB1 expression upon 50 μM treatment for 96 h in LS180 cells (Weiss et al., 2013)
Amiodarone 2.4-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Amprenavir 3.5-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Perloff et al., 2000)
Arsenite 3-fold ABCB1 induction upon 250 nM treatment for 24 h in TRL1215 cells (Liu et al., 2001)
Artemisinin 13.5-fold ABCB1 mRNA induction upon 10 μM treatment for 6 h in Caco-2 cells (Riganti et al., 2009b)
Asiatic acid 2.6-fold ABCB1 induction upon 25 μM treatment for 48 h in LS180 cells (Abuznait et al., 2011b)
Atazanavir 2.5-fold ABCB1 induction upon 10 μM treatment for 72 h in hCMEC/D3 cells (Zastre et al., 2009)
Atorvastatin 4-fold ABCB1 mRNA induction upon 10 μM treatment for 72 h in T84 cells (Haslam et al., 2008a)
Avermectin 2.6-fold ABCB1 induction upon 0.5 μM treatment for 12 h in Drosophila S2 cells (Luo et al., 2013)
Beclometasone 2.1-fold ABCB1 expression increase upon 50 μM treatment for 72 h in Caco-2 cells (Crowe and Tan, 2012)
Benzopyrene Increased ABCB1 expression upon 50 μM treatment for 72 h in Caco-2 cell (Sugihara et al., 2007)
Bethametasone 4-fold ABCB1 induction upon 0.4 μM treatment for 24 h in placenta cells (Manceau et al., 2012)
Bilirubin 18-fold ABCB1 mRNA induction upon 100 μM treatment for 24 h in T84 cells (Naruhashi et al., 2011)
Bosentan 3.7-fold ABCB1 induction upon 50 μM treatment for 96 h in LS180 cells (Weiss et al., 2013)
Bromocriptine 10-fold ABCB1 induction upon 100 μM treatment for 24 h in rat Reuber H35 cells (Furuya et al., 1997)
Budesonide 1.6-fold ABCB1 induction upon 50 μM treatment for 72 h in Caco-2 cells (Maier et al., 2007)
Cadmium 3.7-fold ABCB1 induction upon 10 μM treatment for 72 h in Caco-2 cells (Thevenod et al., 2000)
Caffeine Increased ABCB1 expression upon 5–100 μM treatment for 48 h in LS180 cells (Abuznait et al., 2011a)
Capsaicin 2-fold ABCB1 induction upon 50 μM treatment for 72 h in Caco-2 cells (Han et al., 2006)
Carbamazepine 7.6-fold ABCB1 induction upon 50 μM treatment for 72 h in human blood lymphocytes (Owen et al., 2006)
Catechine 2.3-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Celiprolol 3.2-fold ABCB1 induction upon 100 μM treatment for 72 h in Caco-2 cells (Anderle et al., 1998)
Cembratriene 3-fold ABCB1 induction upon 25 μM treatment for 48 h in LS180 cells (Abuznait et al., 2011b)
Cholate 1.8-fold ABCB1 mRNA induction upon 100 μM treatment for 24 h in T84 cells (Naruhashi et al., 2011)
Chrysin 2.8-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Ciclesonide 1.7-fold ABCB1 induction upon 50 μM treatment for 72 h in Caco-2 cells (Crowe and Tan, 2012)
Cisplatin 2.7-fold ABCB1 expression upon 3 mg/kg treatment for 96 h in liver and kidney of Sprague-Dawley rats (Demeule et al., 1999)
Clotrimazole 4.1-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Colchicine 1.8-fold ABCB1 induction upon 100 μM treatment for 24 h in Caco-2 cells (Silva et al., 2014)
Colupulones 1.3-fold ABCB1 induction upon 1 μM treatment for 48 h in LS180 cells (Bharate et al., 2015)
Cyanidin 2.7-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Cycloheximide 27-fold ABCB1 mRNA induction upon 10 μM treatment for 24 h in RC3 cells (Gant et al., 1992)
Cyclosporine A 2-fold ABCB1 mRNA induction upon 5 μg/mL treatment for 48 h in LS180 cells (Herzog et al., 1993)
Cytarabine 1.3-fold ABCB1 induction upon 0.5 μM treatment for 24 h in HL60 leukemia cells (Prenkert et al., 2009)
Dadzein 1.7-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Daunorubicin 3-fold ABCB1 induction upon 1.5 μg/mL treatment for 4 h in CEM/A7R cells (Hu et al., 1995)
Daurunavir 1.7-fold ABCB1 induction upon 10 μM treatment for 72 h in hCMEC/D3 cells (Chan et al., 2013)
Depsipeptide 6.3-fold ABCB1 mRNA induction upon 5 ng/mL treatment for 72 h in 108 renal carcinoma cells (Robey et al., 2006)
Dexamethasone 2.9- and 1.9-fold ABCB1 expression upon 50 mg/kg7day treatment for 96 h in intestine and liver, respectively, of Wistar rats (Kageyama

et al., 2006)
Digoxin 92-fold ABCB1 mRNA induction upon 1 μM treatment for 72 h in T84 cells (Haslam et al., 2008b)
1,25-Dihydroxyvitamin D3 5.9-fold ABCB1 induction upon 2.5 μg/kg/day treatment for 8 days in fxr(-/-) mice kidney (Chow et al., 2011)
Diltiazem 4-fold ABCB1 mRNA induction upon 10 μg/mL treatment for 48 h in LS180 cells (Herzog et al., 1993)
Docetaxel Increased ABCB1 expression upon 10 μM treatment for 48 h in LS180 cells (Harmsen et al., 2010)
Doxorubicin Increased ABCB1 and ABCB1 mRNA expression upon 3 μM treatments in MCF-7 cells (Mealey et al., 2002)
Doxycycline 8-fold increased ABCB1 expression upon 100 μg/mL treatment for 12 weeks in MCF-7 cells (Mealey et al., 2002)
Efavirenz 8-fold increased ABCB1 expression upon 10 μM treatment for 72 h in hCMEC/D3 cells (Chan et al., 2013)
Epigallocatechin-3-gallate 2.2-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Epirubicin 3-fold ABCB1 induction upon 1.5 μg/mL treatment for 8 h in CEM/A7R cells (Hu et al., 1995)
Eriodictyol 2.1-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Erlotinib 2.9-fold ABCB1 induction upon 10 μM treatment for 48 h in LS180V cells (Harmsen et al., 2013)
Erythromycin 3.3-fold ABCB1 induction upon 15 mg/kg treatment for 7 days in Rhesus monkey livers (Gant et al., 1995)
β-Estradiol 4-fold ABCB1 mRNA induction upon 50 μM treatment for 48 h in LS180 cells (Abuznait et al., 2011a)
Ethinylestradiol 1.6-fold ABCB1 induction upon 0.5 pM treatment for 48 h in Caco-2 cells (Arias et al., 2014)
Fascaplysin 7-fold ABCB1 induction upon 1 μM treatment for 48 h in LS180 cells (Manda et al., 2016)
Flavone 3-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
5-Fluorouracil 4.5-fold ABCB1 induction upon 2 μg/mL treatment for 72 h in CEM/A7R cells (Hu et al., 1999)
Fluticasone +87% ABCB1 induction upon 50μM treatment for 72 h in Caco-2 cells (Crowe and Tan, 2012)
Gefinitib 3-fold ABCB1 induction upon 10 μM treatment for 48 h in LS180V cells (Harmsen et al., 2013)
Genistein 2-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Hyperforin 3-fold ABCB1 induction upon 150 nM treatment for 48 h in LS180 cells (Abuznait et al., 2011a)
Hypericin 7-fold ABCB1 induction upon 3 μM treatment for 72 h in LS180V cells (Perloff et al., 2001)
Idarubicin 4-fold ABCB1 induction upon 0.1 μg/mL treatment for 24 h in CEM/A7R cells (Hu et al., 1999)
Indinavir 1.6-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180V cells (Perloff et al., 2000)
Insulin +89% ABCB1 induction upon 10 U/kg/day treatment for 5 weeks in Sprague-Dawley rats (Liu et al., 2008)
Ivermectin 2-fold ABCB1 induction upon 10 μM treatment for 72 h in JWZ murine hepatic cells (Menez et al., 2012)
Lopinavir 2.3-fold ABCB1 induction upon 10 μM treatment for 72 h in hCMEC/D3 cells (Chan et al., 2013)

(continued on next page)
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nature, structure and origin. ABCB1 inducers include many drugs
(among which several chemotherapeutic drugs and tyrosine kinase in-
hibitors, usually also ABCB1 substrates), natural compounds and
marine compounds, and phosphodiesterase-5 inhibitors.

The ABCB1 amplicon

MDR and the genes in the human ABCB1 amplicon

The human ABCB1 (MDR1) gene resides in chromosome 7q21.1
region (Callen et al., 1987); its ability to confer MDR when over-
expressed or amplified (Callen et al., 1987; Fojo et al., 1987;
Schoenlein, 1993; Scotto et al., 1986; Van der Bliek et al., 1986b) and
the increase in ABCB1 expression upon chemotherapeutic drug treat-
ment (Abolhoda et al., 1999; Atalay et al., 2006; Brugger et al., 2002;
Chin et al., 1990; Gekeler et al., 1988; Hu et al., 1995; Liu et al., 2002;
Park et al., 1994; Schneider et al., 1993) have been largely reported
throughout the years.

The amplification of chromosome 7q21 region in neuroblastoma
cancer cell lines (Flahaut et al., 2006), as well as the increased copy
number of 7q21.12 region (including ABCB1 gene) in lung cancer cells
(Kitada and Yamasaki, 2007) and in leukemia cells (Kadioglu and
Efferth, 2016) correspond to drug resistance, suggesting the possible
participation of other genes in the development of the MDR phenotype.

Genomic instability and chromosomal rearrangements often affect

cancer cells, resulting in genomic amplification, frequently translated in
an increased copy number of the ABCB1 gene that leads to a marked
transactivation of ABCB1 gene overexpression (Chen et al., 2002;
Duesberg et al., 2007; Katoh et al., 2005; Kim et al., 2015; Mickley
et al., 1997; Pang et al., 2005). These genomic rearrangements may
either occur in upstream regions far from the ABCB1 promoter or may
affect genomic alterations along the 7q chromosomal arm that can
correlate with ABCB1 activation (Chen et al., 2002; Knutsen et al.,
1998).

Genomic investigations focusing on the ABCB1 amplicon have been
undertaken in order to understand whether or not the surrounding
genes might have some role in the development of the MDR phenotype
or if they were co-amplified or suppressed in resistance-induced cancer
cell lines. ABCB1 gene expression can be increased up to 1000-fold in
lung cancer cells with acquired paclitaxel resistance, showing a sur-
prising discrepancy between the gene copy number and the expression
level. Along with ABCB1 gene expression enhancement, within the
same amplicon (7q21.12), there is a concomitant co-amplification of
RPIB9 (RUNDC3B) and ADAM22 with an increased fold change of 38.5
and 27.7, respectively (Yabuki et al., 2007).

Taxane-induced MDR ovarian cancer cell lines showed a regional
activation on chromosome 7q21.11-13 of about 22 co-expressed genes
over an area of 8Mb, surrounding the ABCB1 gene. These genes include
SRI (Sorcin), MGC4175 (TMEM243), DMTF1, CROT, ABCB1, ABCB4,
ADAM22, RUNDC3B, DBF4 and the regional activation was driven by

Table 4 (continued)

Drugs inducing ABCB1 expression

Inducer Action

Mangiferin 2.4-fold ABCB1 induction upon 200 μM treatment for 72 h in HK2 cells (Chieli et al., 2010)
Methylprednisolone +50% ABCB1 induction upon 50 μM treatment for 72 h in Caco-2 cells (Crowe and Tan, 2012)
Midazolam 5.9-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Mitoxantrone 30/100-fold ABCB1 mRNA induction upon 1 μg/mL treatment for 8 h in NIH 3T3 cells (Schrenk et al., 1996)
Morphine 2-fold ABCB1 induction upon 20 mg/kg/day treatment for 5 days in Sprague-Dawley rat brains (Aquilante et al., 2000)
Myricetin 2.5-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Naringenin 1.8-fold ABCB1 induction upon 10μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Nelfinavir 3.5-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180V cells (Perloff et al., 2000)
Nevirapine 1.6-fold ABCB1 induction upon 15 μM treatment for 72 h in hCMEC/D3 cells (Chan et al., 2013)
Nicardipine 6-fold ABCB1 mRNA induction upon 10 μM treatment for 48 h in LS180 cells (Herzog et al., 1993)
Nifedipine 4-fold ABCB1 mRNA induction upon 5 μg/mL treatment for 48 h in LS180 cells (Herzog et al., 1993)
Nilotinib 3.6-fold ABCB1 induction upon 10 μM treatment for 48 h in LS180V cells (Harmsen et al., 2013)
Oleocanthal 2.3-fold ABCB1 induction upon 25 μM treatment for 48 h in LS180 cells (Abuznait et al., 2011b)
Ouabain 3.4-fold ABCB1 mRNA induction upon 1 μM treatment for 24 h in HT29 cells (Riganti et al., 2009a)
Oxycodone 4-fold ABCB1 induction upon 5 mg/kg/day treatment for 8 days in Sprague-Dawley rat livers (Hassan et al., 2007)
Paclitaxel Increased ABCB1 expression upon 10 μM treatment for 48 h in LS180 cells (Harmsen et al., 2010)
Parthenolide 6-fold ABCB1 mRNA induction upon 10 μM treatment for 6 h in HT29 cells (Riganti et al., 2009b)
Phenobarbital 14-fold ABCB1 induction upon 1 mM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Phenothiazine 6.5-fold ABCB1 expression upon 50 mg/kg/day treatment for 72 h in bile canalicular membrane vesicles of Wistar rats (Watanabe et al.,

1995)
Phenytoin ABCB1 induction upon 50 mg/kg/day treatment for 21 days in Sprague-Dawley rat brains (Wen et al., 2008)
Piperine 2-fold ABCB1 expression upon 100 μM treatment for 72 h in Caco-2 cells (Han et al., 2008)
Pregnenolone-16α- carbonitrile +53% ABCB1 expression upon 5 μM treatment for 6 h in brain capillaries from CB6F1 rats (Bauer et al., 2006)
Propranolol 4-fold ABCB1 induction upon 200 μM treatment for 24 h in LS180 cells (Collett et al., 2004)
Quercetin 2.5-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
Rapamycin 4.9-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Reserpine 29-fold ABCB1 induction upon 10μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Retinoic acid 20-fold ABCB1 mRNA induction upon 5 μM treatment for 72 h in SK-N-SH cells (Bates et al., 1989)
Rifampicin 16-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Ritonavir 4.2-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180V cells (Perloff et al., 2000)
Saquinavir 2.4-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180V cells (Perloff et al., 2000)
Sildenafil 2.1-fold ABCB1 induction upon 5 μM treatment for 96 h in LS180 cells (Weiss et al., 2013)
Tacrolimus 3.2-fold ABCB1 induction upon 10 μM treatment for 72 h in LS180 cells (Schuetz et al., 1996)
Tadalafil 3.3-fold ABCB1 induction upon 20 μM treatment for 96 h in LS180 cells (Weiss et al., 2013)
Tamoxifen 6-fold ABCB1 induction upon 50 mg/kg/day treatment for 7 days in Rhesus monkey livers (Gant et al., 1995)
Taxifolin 1.8-fold ABCB1 induction upon 10 μM treatment for 4 weeks in Caco-2 cells (Lohner et al., 2007)
γ-Tocotrienol 2.4-fold ABCB1 induction upon 25 μM treatment for 48 h in LS180 cells (Abuznait et al., 2011b)
Trichostatin A 20-fold ABCB1 mRNA induction upon 100 ng/mL treatment for 24 h in SW620 cells (Jin and Scotto, 1998)
Verapamil 3-fold ABCB1 induction upon 10 μM treatment for 72 h in Caco-2 cells (Anderle et al., 1998)
Vinblastine 7.5-fold ABCB1 induction upon 0.011 μM treatment for 72h in Caco-2 cells (Anderle et al., 1998)
Vincristine ABCB1 induction upon 0.1 μM treatment for 48 h in LS180 cells (Harmsen et al., 2010)
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gene copy number gains (Wang et al., 2006). Another study on taxane-
resistant breast cancer cell lines reported gains in gene copy number on
chromosome 7, specifically concerning ABC transporters (ABCB1,
ABCB4), SRI, DMTF1, SLC25A40 and CROT, all belonging to the ABCB1
amplicon (Hansen et al., 2016). Furthermore, a whole-genome char-
acterization study on chemoresistant ovarian cancer cells reported an
intergenic deletion between ABCB1 and SLC25A40 genes and that re-
sults in the creation of a fused transcript, with no evidence of this event
in drug-sensitive tumor samples. Additional transcriptome investiga-
tions showed the increase of ABCB1-SLC25A40 fused transcript in
chemoresistant human ovarian cancer samples and the decrease of
SLC25A40 in drug sensitive specimens (Patch et al., 2015).

However, the genomic rearrangements and the high copy number
cannot explain by themselves the unexpected high level increase in
gene expression, suggesting that other mechanisms as such transcrip-
tional upregulation, mRNA stabilization, post-transcriptional regulation
and epigenetic modifications may contribute to this enhanced gene
expression. Interestingly, non-coding RNAs as miRNAs and long non-
coding RNAs (lncRNA) may exert post-transcriptional regulatory func-
tions in cancer cells, giving rise to metastatic or drug-resistant pheno-
types. Indeed in the ABCB1 amplicon a lncRNA (TP53TG1) resides,
reported to be down-regulated in A549 cisplatin-resistant lung cancer
cells (Yang et al., 2013). On the other hand, deletions in the ABCB1
genes locus in breast cancer patients determine a 2–8-fold decreased
expression of these MDR locus-related genes; cancer patients harboring
these deletions display a better response to neoadjuvant chemotherapy
(Litviakov et al., 2016).

Overall, many published studies report that a genomic amplification
of chromosome 7q21.12 region, where ABCB1 and related genes reside
(Fig. 5), occurs in MDR tumors, and that amplification and or over-
expression of these genes contributes to the MDR phenotype (Bonte
et al., 2008; Chao et al., 1991; Cheng et al., 2013; Finalet Ferreiro et al.,
2014; Flahaut et al., 2006; Hansen et al., 2016; Januchowski et al.,
2017; Kadioglu and Efferth, 2016; Kitada and Yamasaki, 2007; Lee
et al., 2017; Litviakov et al., 2016; Patch et al., 2015; Sasi et al., 2017;
Torigoe et al., 1995; Van der Bliek et al., 1988; Van der Bliek et al.,
1986a; Van der Bliek et al., 1986b; Yabuki et al., 2007). The core of the
amplicon is formed by the genes Sorcin (SRI), ADAM22, DBF4,
SLC25A40, RUNDC3B (RPIP9), ABCB1, ABCB4, CROT, TP53TG1
lncRNA, TMEM243 (MGC4175) and DMTF1 (DMP1) (Fig. 5). All of
these genes have been found to be associated with tumorigenesis and
MDR; very important contributions to the MDR phenotype are due in
particular to the overexpression of DBF4 and Sorcin, which are con-
sidered as important markers of poor prognosis and drivers of MDR in
several types of cancers, acting on different mechanisms with respect to
ABCB1. Selective inhibitors of Sorcin expression and of CDC7-DBF4
activity have been recently developed, and are considered good po-
tential anti-tumor candidates (see below).

ABCB1 amplicon genes: regulation, cancer and MDR

Sorcin (SRI)
Sorcin was originally isolated by Meyers and Biedler in 1981 as a

soluble, low molecular weight protein in hamster lung cancer cell line
resistant to vincristine, and this feature was used to give sorcin the
name of Sorcin (SOluble Resistance-related Calcium binding protein)

(Meyers and Biedler, 1981). Sorcin belongs to the penta EF-hand (PEF)
protein family; as other members of this family, upon calcium binding,
Sorcin undergoes a conformational change, leading to the exposure of
hydrophobic surfaces that enable the interaction with membranes and
other binding partners (Ilari et al., 2015). Among them, Sorcin binds
and controls proteins involved in the regulation of intracellular calcium
concentration as Ryanodine Receptors (RyRs), Sarco/endoplasmic re-
ticulum Ca2+-ATPase (SERCA pumps) and Na+/Ca2+exchanger (NCX),
leading to the termination of contraction and the onset of relaxation
(Colotti et al., 2014; Franceschini et al., 2008; Zamparelli et al., 2010).
Sorcin is phosphorylated by several kinases involved in cell cycle pro-
gression or calcium homeostasis, regulating calcium load in storage
organelles and vesicle trafficking (Lalioti et al., 2014).

Sorcin is overexpressed in many cancers of distinct tissue origin,
especially those displaying the ABCB1-dependent MDR phenotype. The
Sorcin gene resides in the same amplicon of ABCB1 and was identified
as a resistance–related gene because its genomic locus is co-amplified
along with ABCB1 in cancer cells displaying the MDR phenotype (Van
der Bliek et al., 1986a). Although for many years Sorcin overexpression
was thought to be an accidental by-product of this genomic co-ampli-
fication process (Van der Bliek et al., 1988), a large body of published
studies considered Sorcin both as a marker and a cause of MDR. Sorcin
is found overexpressed in many human tumors including lymphoma,
leukemia, gastric cancer, lung cancer, adenocarcinoma, breast cancer,
nasopharyngeal cancer and ovarian cancer, particularly in malignancies
with the ABCB1-dependent MDR phenotype (Deng et al., 2010; Gao
et al., 2015; Padar et al., 2004; Qi et al., 2006; Qu et al., 2010; Sun
et al., 2017; Tan et al., 2003; Yamagishi et al., 2014; Yang et al., 2008;
Zhou et al., 2006).

Many studies have dissected the role of Sorcin in MDR cancer types,
indicating its role as an oncoprotein. In doxorubicin-resistant K562/
A02 leukemia cell lines, Sorcin was found consistently up-regulated
compared to the drug-sensitive parental cell line, and the over-
expression in the resistant line conferred MDR (Hu et al., 2013; Qi et al.,
2006; Sun et al., 2017; Yamagishi et al., 2014; Zhou et al., 2006). Sorcin
expression levels in leukemia patients generally correlate with low-re-
sponse to chemotherapies and poor prognosis. Moreover, Sorcin over-
expression by gene transfection resulted in increased drug resistance to
a variety of chemotherapeutic agents, including doxorubicin, etoposide,
homoharringtonine and vincristine in K562 cells; and conferred drug
resistance to vincristine, adriamycin, paclitaxel and 5-fluorouracil in
SGC7901 cells, ovarian and breast cancer, thereby confirming the
ability of Sorcin overexpression to enhance drug resistance. Con-
sistently, inhibition of Sorcin expression by RNA interference techni-
ques led to reversal of MDR in many tumor cell lines, as MDR K562/
A02 and Sorcin-transfected K562, MCF-7/A02, HeLa, colorectal cancer
and CNE2/DDPls (Colotti et al., 2014; Dabaghi et al., 2016; Gao et al.,
2015; Gong et al., 2014; Hamada et al., 1988; He et al., 2011; Hu et al.,
2013; Hu et al., 2014; Kawakami et al., 2007; Liu et al., 2014;
Maddalena et al., 2011; Parekh et al., 2002; Sun et al., 2017; Zhou
et al., 2006).

Additionally, a recent study showed that directed siRNA-Sorcin si-
lencing decreased ABCB1 protein levels in a H1299 lung cancer cell
line, with a consequent increase in rhodamine123 efflux out of the cells,
confirming a direct relationship between Sorcin and regulation of
ABCB1 transport activity in MDR cells. Besides, Sorcin is able to bind

Fig. 5. The ABCB1 amplicon. Genes in the 7q21.12 region are shown.
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directly doxorubicin, paclitaxel, vinblastine and cisplatin, acting as a
protein drug sink thus hampering nuclear uptake of doxorubicin, thus
allowing cell survival (Genovese et al., 2017). Sorcin is highly ex-
pressed and is able to bind doxorubicin with high affinity on the EF5-
hand (Fig. 6), which does not bind calcium and is involved in homo-
dimer formation (Genovese et al., 2017).

Furthermore, Sorcin silencing inhibits the epithelial-to-mesench-
ymal (EMT) transition in the human breast cancer MDA-MB-213 cell
line, possibly via E-cadherin and VEGF expression, and reduces breast
cancer metastasis, while Sorcin overexpression increases migration and
invasion in vitro (Hu et al., 2014). Sorcin expression levels are sig-
nificantly up-regulated in hepatocellular carcinoma (HCC) tumors
compared with matched adjacent non-tumor liver tissues and normal
liver tissues, and expression levels correlate with HCC metastasis. HCC
patients with high Sorcin expression had both shorter survival and
higher recurrence than those with low Sorcin expression. Sorcin ex-
pression is therefore an independent and significant risk factor for
survival and recurrence of HCC patients. Sorcin can promote HCC and
colorectal cancer cell proliferation, migration, and invasion in vitro, and
facilitate cancer growth, metastasis and EMT, by activating extra-
cellular signal-regulated kinase (ERK) and/or PI3K/Akt signaling
pathways (Lei et al., 2017; Tong et al., 2015).

Several groups are currently studying the role of Sorcin in the de-
velopment of MDR in cancer cells, disclosing intriguing findings.
Yamagishi and collaborators found that Sorcin expression correlates
with ABCB1 up-regulation, indeed Sorcin induced ABCB1 expression
through a cAMP response element (CRE) located within −716 and
−709 bp in the ABCB1 gene. Consistently, they found that up-regula-
tion of Sorcin induces ABCB1 expression through the inducible acti-
vation of CREB (cAMP response element-binding protein) pathway in-
creasing the phosphorylation of CREB1 and its binding to the CRE
binding site in the ABCB1 promoter (Yamagishi et al., 2014).

A shorter isoform (18 KDa) of Sorcin, identified to be located in
mitochondria, is the aim of the quality control system operated by ER-
associated TRAP1. The latter protein is up-regulated in several human
tumors and can modulate apoptosis; indeed, transfection experiments of
a TRAP1 deletion mutant in TRAP1-silenced cells increased the ex-
pression of mitochondrial sorcin and protected cells from apoptosis

upon treatment with ER stress agents and paclitaxel (Maddalena et al.,
2013), suggesting a putative post-transcriptional regulation of sorcin
expression. Sorcin, loading calcium in ER and mitochondria, partici-
pates in the prevention of ER stress and unfolded protein response, and
increases cell escape from apoptosis (Lalioti et al., 2014; Maddalena
et al., 2011; Maddalena et al., 2013), shifting the equilibrium between
cell life and death towards proliferation in MDR cancer cells over-
expressing Sorcin.

For these reasons, Sorcin is an interesting oncoprotein and MDR
marker, able to bind several chemotherapeutic drugs, whose over-
expression results in the MDR phenotype. Sorcin expression is directly
linked to ABCB1 up-regulation, and is itself involved in regulation of
the ABCB1-dependent MDR phenotype. The modulation of Sorcin ex-
pression and activity (Li et al., 2016a; Sun et al., 2017) is emerging as a
possible strategy for overcoming tumorigenesis, cancer-related EMT
and MDR.

ADAM22
ADAM22 is a non-catalytic metalloprotease involved in both reg-

ulation of cell adhesion and spreading and inhibition of cell prolifera-
tion. It acts as a neuronal receptor for LGI1 and as a ligand with the
integrin αvβ3 and also with integrin dimers containing α6 or α9 in the
brain (D’Abaco et al., 2006), thus regulating synaptic transmission
(Fukata et al., 2006; Liu et al., 2009). In ovarian cell lines and in two
different human breast cancer cell lines, MCF-7 and MDA-MB-231,
exposure to docetaxel induced resistance to the drug, accompanied by
overexpression of ADAM22 and many other proteins of the ABCB1
amplicon (Hansen et al., 2016; Wang et al., 2006). Microarray analysis
uncovered that ADAM22 is overexpressed in doxorubicin-resistant os-
teosarcoma cell lines (Ma et al., 2017). ADAM22 is a target of SRC1,
steroid co-activator protein 1; in this respect, SRC1 overexpression
enhances ADAM22 expression in endocrine-sensitive MCF-7 breast
cancer cells. An enrichment of SRC1 was found at the ADAM22 pro-
moter through chromatin immunoprecipitation (ChIP) experiments in
endocrine-resistant breast cancer but not in the sensitive one, sug-
gesting the ability of this protein to promote tumor progression. SRC1-
dependent ADAM22 expression in response to tamoxifen has been ob-
served; ADAM22 is considered a prognostic and therapeutic drug target
in the treatment of endocrine-resistant breast cancer. Further, ADAM22
gene methylation is associated with malignant transformation of
ovarian endometriosis (Bolger and Young, 2013; McCartan et al., 2012;
Ren et al., 2014).

DBF4
DBF4 is a positive regulatory subunit of the CDC7 kinase that plays a

central role in DNA replication and cell proliferation, being essential for
the progression through the S phase. Indeed, the DBF4-CDC7 complex
phosphorylates the Mcm2 helicase at Ser40 and Ser53, thereby al-
lowing the initiation of eukaryotic DNA replication. CDC7 levels appear
to be constant throughout the cell cycle, whereas DBF4 levels have a
burst in late G1 phase and decrease at the end of mitosis (Cheng et al.,
2013; Pasero et al., 1999; Weinreich and Stillman, 1999). CDC7-DBF4 is
essential for the initiation of DNA replication; during the G1 phase
CDC7-DBF4 is down-regulated by RAD53-dependent phosphorylation
of DBF4, which allows origin licensing and prevents premature re-
plication initiation (Zegerman and Diffley, 2010), while in the S phase,
the intra-S-phase checkpoint is activated by CDC7-DBF4, by removing
the inhibitory activity of Mcm4 (Sheu and Stillman, 2010).

DBF4 has three motifs, N, M and C, which regulate its interaction
with various binding partners. The N motif is located at the N-terminus
of the protein and is believed to interact with ORC and RAD53, a kinase
required for check-point mediated cell cycle arrest (Duncker et al.,
2002). The C and N motifs are involved in the response towards gen-
otoxic agents, while less is known about the M motif (Fung et al., 2002),
even though it seems to have a role in cell proliferation, since it med-
iates the interaction with Mcm2 (Varrin et al., 2005).

Fig. 6. Structure of Sorcin in complex with doxorubicin. The two monomers of Sorcin are
indicated in cyan and orange, and doxorubicin in magenta sticks. The residues involved in
doxorubicin binding are indicated and represented as sticks; calcium ions are represented
as green spheres (Genovese et al., 2017). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Both CDC7 and DBF4 are overexpressed in many cancer cell lines
and primary tumors; tumor cell lines with increased CDC7 protein le-
vels also have increased DBF4, whose gene can be present in extra
copies in some tumors (Bonte et al., 2008; Cheng et al., 2013). Over-
expression of CDC7-DBF4 has been reported in many human tumors,
including ovarian cancer, colorectal cancer, melanoma, diffuse large B-
cell lymphoma, oral squamous cell carcinoma and breast cancer, and is
correlated with poor prognosis and advanced grade tumor grade (Bonte
et al., 2008; Chen et al., 2013a; Cheng et al., 2013; Choschzick et al.,
2010; Clarke et al., 2009; Hou et al., 2012; Kulkarni et al., 2009;
Nambiar et al., 2007). A high correlation between loss of p53 function
and up-regulation of DBF4 and CDC7 is observed in primary breast
cancer, suggesting that the increased amount of CDC7-DBF4 is pre-
sumably a common driver mutation for this malignancy (Bonte et al.,
2008). Higher DBF4-expressing melanomas were associated with lower
relapse-free survival, and higher proliferation (Nambiar et al., 2007).
High expression of CDC7-DBF4 correlates with poor prognosis in pa-
tients with large B-cell lymphoma (Hou et al., 2012), and is a marker of
resistance to DNA-damaging compounds in oral carcinoma (Cheng
et al., 2013), and a marker of chemoresistance to cisplatin, mitomycin
C, taxol, hydroxyurea and etoposide in lung adenocarcinoma and
bladder cancer (Sasi et al., 2017). 6-fold overexpression of DBF4 was
recently found in docetaxel-resistant prostate cancer cells with respect
to docetaxel-sensitive cells (Lee et al., 2017), and overexpression of
DBF4 was acquired during progression towards docetaxel resistance in
taxane-treated breast cancer cells (Hansen et al., 2016).

MiR29a regulates BPDE-induced DNA damage response (and de-
termines increased cell lethality) through repression of CDC7-DBF4
kinase expression in lung cancer cells, while overexpression of CDC7-
DBF4 determines resistance to BPDE (Barkley and Santocanale, 2013).
Further, CDC7-DBF4 is highly expressed in colorectal cancer and is
considered a potential therapeutic target in cancers with high p53 ex-
pression and an independent prognostic biomarker in colorectal cancer
enabling to select patients for adjuvant anti-CDC7-DBF4 treatment
(Melling et al., 2015). Since the CDC7-DBF4 kinase is considered a
novel and promising cancer target, inhibitors of the CDC7-DBF4 kinase
have been recently developed, and are considered good potential anti-
tumor candidates: in particular, the benzofuropyrimidinone XL413 is a
selective inhibitor, able to arrest cell cycle and inhibit tumor growth in
a Colo-2015 xenograft model (Koltun et al., 2012); pyridinyl-pyrrole
derivative compounds (such as PHA-767491) have antitumor activity
on glioblastoma, pancreatic cancer, breast cancer and other tumors
(Erbayraktar et al., 2016; Montagnoli et al., 2008; Natoni et al., 2011;
Sasi et al., 2017).

SLC25A40
SLC25A40 belongs to the solute carrier 25 (SLC25) nuclear-encoded

protein family residing on mitochondrial membranes, and in some cases
in other organelle membranes, and protects mitochondria from oxida-
tive stress (Palmieri, 2013). These proteins are widely expressed in
eukaryotic cells and they possess conserved structural features as, a
tripartite structure, six hydrophobic transmembrane α-helices and a 3-
fold repeated signature motif. Members of this family can vary by the
nature and size of the transported substrates, for the modes of transport
and driving force (Palmieri, 2013).

SLC25A40 mRNA and SLC25A40 protein are highly expressed in
brain and central nervous system (Haitina et al., 2006). Valach and
coworkers reported a relationship between SLC25A40 overexpression
and tumorigenesis, and they found it to be also activated in cancer-
associated fibroblasts (Valach et al., 2012).

SLC25A40 was reported to be overexpressed in drug-resistant
cancer cell (Hansen et al., 2016), and an ABCB1-SLC25A40 fused
transcript product was observed in resistant ovarian cancer cells (Patch
et al., 2015); its precise role in MDR has not been fully elucidated yet.

RUNDC3B (RPIP9)
RUNDC3B (RUN domain-containing protein 3B) function has not

been determined yet, but it is known to contain a RUN domain used to
interact with RAP2 (explaining the alternative name RAP2 binding-
protein 9, RPIP9), a RAS-protein involved in the MAPK cascade.
RUNDC3B also contains a binding site for MAPK signaling pathway
intermediates, being in the middle between RAP2 and MAPK pathway,
thus it is likely to be involved in the RAS-like GTPase signaling pathway
(Burmeister et al., 2017; Finalet Ferreiro et al., 2014).

Both RUNDC3B isoforms are highly expressed in brain tissue;
RUNDC3B is activated in tumorigenic breast cancer cell lines and in the
breast cancer primary tumor (Raguz et al., 2005).

RUNDC3B is in the same amplicon of ABCB1 and is transcribed from
the complementary DNA strand of the ABCB1 gene (Fig. 5); it may
interfere with alternative regulation of ABCB1 promoter regulation.
Treatment with histone deacetylases inhibitors (iHDACs) of colon and
pancreatic carcinomas results in an increased expression of ABCB1 and
RUNDC3B mRNAs (Balaguer et al., 2012). In addition, both ABCB1 and
RUNDC3B overexpression was found in breast cancer cells compared to
normal tissues, with a correlation between this overexpression and poor
prognosis in breast cancer (Raguz et al., 2005).

Integrative genomic studies report an increased expression of
RUNDC3B in paclitaxel-resistant ovarian cancer cells (Januchowski
et al., 2017) and a correlation between tumor growth advantage and
chemoresistance in hepatosplenic T-cell lymphoma where a gain of
chromosome 7q arm corresponds to an up-regulation of RUNDC3B
(Finalet Ferreiro et al., 2014).

ABCB4 (PGY3, MDR3)
ABCB4, a member of ABC transporters, is encoded by the ABCB4

(MDR3) gene, and is an ATP-dependent phospholipid efflux translo-
cator and a positive regulator of biliary lipid secretion, acting as a
phospholipid flippase which translocates phosphatidylcholine (PC)
from liver hepatocytes into bile, thus being essential for bile formation.
It can also influence the composition of lipids of the plasma membrane,
recruiting PC, phosphatidylethanolamine (PE) and sphingomyelin (SM)
towards non-raft membrane domain or contributing to cholesterol and
SM-enrichment in raft membranes in hepatocytes (Morita and Terada,
2014). ABCB4 cooperates with ATP8B1 to protect hepatocytes from the
detergent activity of bile salts (Groen et al., 2011).

ABCB4 and ABCB1 belong to ABC transporters superfamily, and are
encoded by fused genes, arising from an endoduplication event, and
often co-amplified because of their genomic proximity (about 500 Kb);
they share 80% nucleotide sequence identity, and 77% identity and
82% similarity in the amino acidic sequence (Callen et al., 1987;
Torigoe et al., 1995; Van der Bliek et al., 1987; Van der Bliek et al.,
1988).

ABCB4 is well expressed in the liver; its substrates are PC and some
hydrophobic drugs, while in MDR cells ABCB4 is particularly selective
for paclitaxel and vinblastine (Gottesman et al., 2002; Thomas and
Coley, 2003). ABCB4 is co-amplified with ABCB1 in several MDR cancer
cell lines. In doxorubicin-resistant colon cancer cell lines, its mRNA is
up-regulated up to 40-fold compared to parental cell lines, and this
amplification is possibly due to the concomitant amplification of the
ABCB1 gene (Chao et al., 1991). A dose-dependent increase in ABCB1
and ABCB4 levels is observed in doxorubicin-, paclitaxel- and vincris-
tine-resistant cancer cell lines upon drug selection; further, in some of
these tumor cell lines, up-regulation of ABCB4 was higher than that of
ABCB1, suggesting a compensatory mechanism in drug resistance when
ABCB1 is not overexpressed, and an active role for ABCB4 in MDR,
driven preferentially towards doxorubicin and paclitaxel (Januchowski
et al., 2017; Januchowski et al., 2014a; Januchowski et al., 2014b).

The increased mRNA and protein levels of ABCB4 along with those
of ABCB1 in acquired paclitaxel-resistant breast cancer cells highlights
a role of ABCB4 in taxane resistance, since it was shown that directed
siRNA silencing towards ABCB1 did not restore the complete paclitaxel
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sensitivity in these cancer cell lines co-overexpressing both ABCB1 and
ABCB4 (Nemcova-Furstova et al., 2016). This matter is still conflicting,
as while ABCB4 silencing in paclitaxel-resistant ovarian cancer cells
does not fully restore drug sensitivity, ABCB1 silencing completely re-
verses MDR (Duan et al., 2004a). However, it seems that transcriptional
regulation of ABCB4 gene expression relies mostly on ABCB1 co-am-
plification; nevertheless, ABCB4 has a role in drug resistance, pre-
ferentially in taxanes, hence complementing the protective role of
ABCB1 against various MDR type anticancer drugs

CROT
Carnitine O-octanoyltrasferase is a peroxisomal protein that plays a

role in lipid metabolism and fatty-acid beta-oxidation. DNA copy in-
crease and increased expression of CROT, together with that of other
proteins of the 7q21.11-13 chromosomal region, was observed upon
progressive administration of paclitaxel and docetaxel to 18 ovarian
cancer cell lines (Wang et al., 2006), and of docetaxel to the MCF-7
breast cancer cell line (Hansen et al., 2016). MiR-33 co-downregulates
the expression of ABC transporters and CROT (Fernandez-Hernando
et al., 2011).

TP53TG1 lncRNA
TP53TG1 is a p53-induced lncRNA, which is activated upon DNA

damage and acts as a tumor suppressor, contributing to p53 response to
DNA damage (Diaz-Lagares et al., 2016). It was reported to bind YBX1
DNA/RNA binding protein, preventing its nuclear localization and
subsequent activation of oncogenes (Diaz-Lagares et al., 2016). The first
evidence of its down-regulation came from microarray experiments
performed on A549 cisplatin-resistant lung cancer cell lines (Yang et al.,
2013). In colorectal cancer cells the TP53TG1 promoter undergoes a
hypermethylation that causes the release of the YBX1 protein and
subsequent transcription of oncogenes, resulting in an MDR phenotype
(Lizarbe et al., 2017). The same findings were reported by Diaz-Lagares
and coworkers in other cancer cell lines (Diaz-Lagares et al., 2016).

Beside the epigenetic inactivation of TP53TG1 transcription, its
upregulation has been reported in T lymphocytes exposed to ionizing
radiations, in colon cancer cells treated with bleomycin or cisplatin and
in docetaxel-resistant breast cancer cells (Hansen et al., 2016; Kabacik
et al., 2015; Takei et al., 1998). TP53TG1 is the first lncRNA activated
upon induction of double strand breaks (DSBs), confirming its activa-
tion upon cell stress and DNA damage (Kabacik et al., 2015). Ad-
ditionally, overexpression of TP53TG1 has been observed in glioma
cells, compared to normal brain tissue. This up-regulation results in cell
proliferation and migration, especially under glucose deprivation (Chen
et al., 2017). Cellular TP53TG1 lncRNA expression is up-regulated
under stress conditions (and in docetaxel-resistant breast cancer cells),
but its promoter can be epigenetically silenced in cancer cells leading to
the development of MDR, suggesting a role in the development of in-
trinsic MDR.

TMEM243 (MM-TRAG, or MGC4175)
TMEM243 (MDR1- and mitochondrial taxol resistance-associated

protein transmembrane protein 243) is a transmembrane protein that
localizes at nuclei, mitochondria and cell membrane; it is expressed in
all tissues with no reported differences between normal tissues and
chemotherapy naïve cancer cells (Duan et al., 2004b), and is over-
expressed in taxane-resistant ovarian cancer cells (Wang et al., 2006), a
possible indication of a role in acquired MDR.

Microarray experiments reported an up-regulation in taxol- and
doxorubicin-resistant cancer cell lines, compared to the non-treated
cancer cells. Under these conditions, TMEM243 is present as a single
copy gene, and its overexpression is not due to genomic amplification
or gene rearrangements (Duan et al., 2004b), suggesting a mechanism
of acquired MDR. Furthermore its expression has been reported as as-
sociated with paclitaxel resistance in drug-resistant breast cancer cells
(Dorman et al., 2016) and in doxorubicin-resistant osteosarcoma cell

lines, where microarray and qPCR experiments showed a 2-fold upre-
gulation (Rajkumar and Yamuna, 2008).

DMTF1 (DMP1)
DMTF1 (Cyclin-D binding myb-like transcription factor 1) is a

transcriptional activator of CDN2A/ARF locus in response to RAS-RAF
signaling promoting cell growth arrest p53-mediated. It binds to ARF
activating its transcription and stimulating p53 quenching with onco-
genic signaling pathways (RAS, HER2neu, C-MYC, cyclin D), thus
acting as an oncosuppressor (Frazier et al., 2012; Fry et al., 2016).
DMTF1 contains a cyclin D-binding domain, three central myb or myb-
like domains, and two flanking acidic transactivation domains. The
structure of the N-terminal, myb-like domain of DMTF1 has been solved
by NMR (PDB accession code: 2LLK). In DMTF1, myb-like domains are
able to bind both DNA and proteins. DMTF1 physically interacts with
p53, preventing its ubiquitination by Mdm2, thus promoting nuclear
localization of p53 (Frazier et al., 2012; Kendig et al., 2017). DMTF1 is
highly expressed in terminally differentiated cells and experimental
evidence showed that in hematopoietic cell lines, its repression oc-
curred by WT1, which is expressed only in hematopoietic progenitors,
thereby leading to leukemia (Tschan et al., 2008). Furthermore DMTF1
mRNA is decreased in AML cell lines compared to normal granulocytes
and treatment with ATRA restored normal levels of the DMTF1 tran-
script (Inoue and Fry, 2016).

Van Dekken and collaborators reported a high level of amplification
of genes residing on the 7q chromosome region in adenocarcinoma of
the gastroesophageal junction, including DMTF1 (van Dekken et al.,
2006). Acquisition of docetaxel resistance in breast cancer cells corre-
lates with overexpression of DMTF1, together with that of other pro-
teins of the ABCB1 amplicon (Hansen et al., 2016). On the other hand,
the human DMTF1 gene appears to be deleted in 40% of human non-
small-cell lung carcinoma (NSCLC), that generally have normal levels of
ARF and p53 (Sugiyama et al., 2008); corroborating results reported
that DMTF1 deletion in breast cancer cell lines brings about features of
tumor aggressiveness renders p53 inactive (Fry et al., 2017). In addi-
tion, DMTF1 transcription is repressed upon anthracycline treatment,
thus leading to NF-kappaB-dependent repression of the Arf-p53
pathway; both DMTF1(-/-) and ARF(-/-) cells are anthracycline-re-
sistant (Taneja et al., 2007).

Other researchers reported that DMTF1 deletion cooperates with
kRAS signaling for the development of cancer in vivo, and confirmed
that it acts as a primary regulator of lung carcinogenesis, being a reg-
ulator of ARF-p53 pathway (Mallakin et al., 2007).

It has been observed that this deletion brings a consequent loss of
DMTF1 and leads to tumorigenesis in a mouse model as well; it has been
noted that DMTF1(+/−) mice, harboring a copy of the gene, still de-
veloped tumors, suggesting a DMTF1 haploinsufficiency (Inoue et al.,
2007). The hemizygous copy of DMTF1 gene is found at high frequency
in breast cancer cells (Maglic et al., 2015), undergoing a fine post-
transcriptional regulation. Indeed its mRNA is alternatively spliced to
three variants (α,β,γ) that can exert different functions (Inoue and Fry,
2016). DMTF1γ has an unknown function, but interestingly α and β
variants have two divergent functions; in breast cancer, the α variant is
p53-dependent and acts as a tumor suppressor, whereas the β variant is
p53-independent and acts as an oncogene. Furthermore, DMTF1 β/α
ratio increases with neoplastic transformation, and high β variant ex-
pression is associated with a shorter survival rate in cancer. DMTF1β
was also found overexpressed in primary breast cancer, with a negative
impact on patients survival, and it does not activate ARF, suggesting
that the β variant may antagonize α’s dependent ARF activation,
leading to cell proliferation and tumorigenesis (Inoue and Fry, 2016).
Alternative splicing of DMTF1 transcript is a way for cancer cells to
modulate survival and proliferation since it has been observed that 30%
of breast cancer cells have higher amounts of β rather than α, and that
the β mRNA is 43–55% higher in breast cancer while the β protein is
increased by 60% in tumors, suggesting a fine post-transcriptional
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regulation (Maglic et al., 2015). The DMTF1β variant can be thus
considered a cancer biomarker, and proteins that activate the DMTF1
promoter or stabilize the DMTF1α variant, lead to regression of tumor
growth in vitro (Fry et al., 2017).

Another strategy of post-transcriptional regulation of the DMTF1
gene is exerted by miR-155, an oncogenic microRNA. In bladder cancer
tissues miR-155 reduces the expression of DMTF1, leading to cell cycle
progression and enhancement of cancer cell growth (Peng et al., 2015).

DMTF1 expression regulation in cancer mainly relies on gene de-
letion, since it is generally considered as a haploinsufficient tumor
suppressor, and also on post-transcriptional regulation that leads to its
down-regulation, even though alternative splicing plays an intriguing
role in the up-regulation of the oncogenic DMTF1 variant (Inoue and
Fry, 2016).

Future perspectives

The idea of ABCB1 as a major player in MDR is now outdated, and 4
generations of ABCB1 transport inhibitors have been unexpectedly and
disappointingly ineffective in the clinic. Emerging contributions to
MDR in tumors continue to increase, and resistance to chemother-
apeutic drugs is now considered a complicated puzzle, with an ever-
increasing number of pieces, involved in many different functions, with
complex and intricate connections, acting at multiple regulatory levels.
Even at the single level of ABCB1 expression, the co-amplification and/
or co-expression of genes of chromosome 7q21 residing on the same
amplicon is emerging as a factor that contributes and modulates MDR.

The contribution of TP53TG1 lncRNA, TMEM243, SLC25A40,
RUNDC3B, ADAM22, and in particular of SRI, ABCB4, DMTF1 and DBF4
is now acknowledged as an important determinant of MDR.
Deciphering their functions could pave the way for the development of
novel clinically relevant strategies for therapeutic interventions in
cancer. In addition, gene-targeting and expression modulation strate-
gies, e.g. by the use of epigenetic drugs, non-coding RNAs or natural
products can represent possible options, both for the improvement of
the knowledge of the molecular basis of MDR and for drug discovery.
CDC7-DBF4 inhibitors are already available and are considered good
potential anti-tumor drug candidates: PHA-767491 and XL413 are se-
lective inhibitors, with good antitumor activity vs. several tumors, such
as glioblastoma, pancreatic cancer, colon and breast cancer
(Erbayraktar et al., 2016; Montagnoli et al., 2008; Natoni et al., 2011;
Sasi et al., 2017). The use of combined administration of drugs tar-
geting ABCB1, Sorcin and CDC7-DBF4 could prove a viable and more
effective therapeutic strategy against MDR tumors.

Conclusions

MDR continues to pose a dominant obstacle towards curative che-
motherapy against various human cancers. ATP-driven efflux pumps,
ABCB1 in particular, are responsible for drug expulsion and have a
significant role in conferring MDR upon various cancer cells, that de-
velop cross-resistance to diverse anticancer drugs, resulting in the
failure of chemotherapy in multiple malignancies (Ambudkar et al.,
1999; Fletcher et al., 2016; Holohan et al., 2013; Li et al., 2016b;
Sharom, 2011; Silva et al., 2015). Overexpression of ABCB1 in tumors,
particularly upon chemotherapeutic treatment, is possibly the major
cause of treatment failure; notwithstanding the design of 4 generations
of ABCB1 transport inhibitors and the wealth of information on the
biochemistry and substrate specificity of ABC transporters, translation
of this knowledge from the bench to the bedside has proved to be un-
expectedly difficult.

Many studies have shown that upon repeated treatment of cultured
tumor cell lines with a plethora of anticancer drugs including for ex-
ample taxenes, anthracyclines, Vinca alkaloids, epipodophyllotoxins
and other chemotherapeutic drugs, amplification, and/or over-
expression of a series of genes surrounding the genomic ABCB1 locus is

observed; altered levels of these proteins may correlate with the es-
tablishment of the MDR phenotype, and lead to poor clinical outcome.
Genes in the ABCB1 amplicon (with the exception of the tumor sup-
pressor TP53TG1 lncRNA) were generally up-regulated in many can-
cers, and especially in MDR tumors; all of these genes are directly in-
volved in tumor growth and drug resistance and finely regulated in
various modes, from canonical transcriptional upregulation to epige-
netic and post-transcriptional control.

The genes in the ABCB1 amplicon exert important roles for cell
survival in cancer or MDR status, as p53-mediators of cell growth arrest
(TP53TG1 and DMTF1), cell cycle or cell proliferation regulators (DBF4
and ADAM22), mediators of signaling pathways (RUNDC3B), mi-
tochondrial transmembrane proteins (SLC25A40 and TMEM243), ATP-
driven pumps (ABCB4) or calcium and xenobiotic sensors (Sorcin). In
particular, Sorcin is able to limit the cytotoxic activity of chemother-
apeutic agents in tumor cells and to confer MDR via three known me-
chanisms: by direct binding to chemotherapeutic drugs as well as its
overexpression on the one hand induces ABCB1 overexpression and on
the other hand activates pathways leading to EMT and metastasis.

In conclusion, the gain of knowledge about these genes and their
role in cancer and chemoresistance can possibly pave the way towards
the development of novel biomarkers as well as offer important in-
formation on tumorigenesis and MDR mechanisms. A possible strategy
to overcome MDR in cancer could be by considering the targeting of
these proteins, which are often co-overexpressed along with ABCB1 in
MDR tumors, and can be used as biomarkers of poor cancer patient
outcome.
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Binding of doxorubicin to Sorcin impairs cell death and
increases drug resistance in cancer cells

Ilaria Genovese1, Annarita Fiorillo1, Andrea Ilari2, Silvia Masciarelli3, Francesco Fazi*,3 and Gianni Colotti*,2

Sorcin is a calcium binding protein that plays an important role in multidrug resistance (MDR) in tumors, since its expression
confers resistance to doxorubicin and to other chemotherapeutic drugs. In this study, we show that Sorcin is able to bind
doxorubicin, vincristine, paclitaxel and cisplatin directly and with high affinity. The high affinity binding of doxorubicin to sorcin
has been demonstrated with different techniques, that is, surface plasmon resonance, fluorescence titration and X-ray diffraction.
Although the X-ray structure of sorcin in complex with doxorubicin has been solved at low resolution, it allows the identification of
one of the two doxorubicin binding sites, placed at the interface between the EF5 loop the G helix and the EF4 loop. We show that
Sorcin cellular localization changes upon doxorubicin treatment, an indication that the protein responds to doxorubicin and it
presumably binds the drug also inside the cell, soon after drug entrance. We also demonstrate that Sorcin is able to limit the toxic
effects of the chemotherapeutic agent in the cell. In addition, Sorcin silencing increases cell death upon treatment with
doxorubicin, increases the accumulation of doxorubicin in cell nucleus, decreases the expression of MDR1 and doxorubicin efflux
via MDR1.
Cell Death and Disease (2017) 8, e2950; doi:10.1038/cddis.2017.342; published online 20 July 2017

The development of drug resistance is the leading cause of
chemotherapy failure in cancer treatment. Elucidation of the
mechanisms that confer simultaneous resistance to different
drugs with different chemical structures and molecular targets
– multidrug resistance (MDR) – has been a primary goal of
cancer biologists during the past decades. Chemotherapy is
the treatment of choice in metastatic cancer; by limiting drug’s
effectiveness, MDR represents a major obstacle to this option.
Cancer cells can adopt several strategies to evade death

induced by chemotherapeutic agents. These include changes
in apoptotic pathways, increased DNA damage repair, drug
inactivation, alteration of drug targets and increased expres-
sion of ABC transporters, able to pump xenobiotics (such as
toxins or drugs) out of cells.1 Many cancer cells express large
amounts of MDR1 (ABCB1, or P-glycoprotein 1), which
confers them MDR.2–4

Sorcin (SOluble Resistance-related Calcium-binding
proteIN) gene is located in the same chromosomal locus
and amplicon as the ABC transporters MDR1 andMDR3, both
in human and rodent genomes, and is highly conserved
among mammals. Sorcin was initially labeled ‘resistance-
related’, since it is co-amplified with MDR1 in multidrug-
resistant cells.5,6 While for years Sorcin overproduction was
believed to be a by-product of the coamplification of its gene
with P-glycoprotein genes,7 many recent reports have
demonstrated that Sorcin plays a role in MDR, and pointed
at a possible role as an oncoprotein.
Sorcin is one of the most highly expressed calcium-binding

proteins in many tissues, and part of the 5% most expressed

proteins of the human proteome (PaxDb). Importantly, Sorcin
is overexpressed in many human tumors and MDR cancers.8

The level of Sorcin expression in leukemia patients inversely
correlates with patients’ response to chemotherapies and
overall prognosis. In parallel, Sorcin is highly expressed in
chemoresistant cell lines and significantly upregulated in
doxorubicin-inducedMDR leukemia cell line K562/A02 over its
parent cells. Sorcin overexpression by gene transfection
increased drug resistance to a variety of chemotherapeutic
agents in K562 cells, SGC7901 cells, ovarian and breast
cancer. On the other hand, several studies have demonstrated
that inhibition of Sorcin expression by RNA interference led to
reversal of drug resistance in many cell lines.8

Recent data indicate that Sorcin participates in several
processes that might contribute to MDR in human cancers,
such as drug efflux regulation, apoptosis modulation and
epithelial-to-mesenchymal transition (EMT) control.8,9 Con-
flicting results are in literature on the effect of Sorcin
overexpression and silencing on MDR1 expression and
activity.10–13 A complete understanding of the mechanisms
and pathways by which Sorcin contributes to the MDR
phenotype of tumor cells and an assessment of the overall
diagnostic and therapeutic potential of sorcin in MDR are still
missing.
Recently we have solved the crystal structure of apo- and

calcium-bound human Sorcin, showing the mechanism of
activation of the protein.14 Upon calcium binding Sorcin
undergoes a large conformational change that exposes three
pockets, hydrophobic surfaces involving the EF loop and EF5
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hand (Pocket 1), EF2-EF3 (Pocket 2) and region EF1-EF3
(Pocket 3). This allows Sorcin to bind and regulate target
proteins in a calcium-dependent fashion.15–21

Here we demonstrate that Sorcin binds doxorubicin directly
and with high affinity and that it changes its cellular localization
upon doxorubicin treatment and limits the toxic effects of
doxorubicin in the cell; the low resolution structure of Sorcin in
complex with doxorubicin allowed the identification of at least
one chemotherapeutic drug binding site.We also demonstrate
that Sorcin silencing increases cell death upon doxorubicin
treatment, increases the accumulation of doxorubicin in cell
nucleus, decreases the expression of MDR1 and doxorubicin
efflux via MDR1.

Results

Sorcin binds doxorubicin and other chemotherapeutic
drugs with high affinity. For surface plasmon resonance
(SPR) experiments, two types of sensorgrams have been
measured. OneStep-SPR experiments show that Sorcin is
able to bind doxorubicin, paclitaxel and vinblastine, with high
affinity, in the submicromolar range (Figure 1,Supplementary
Figure S1); FastStep-SPR experiments (Figure 1a,
Supplementary Figure S2) can be fitted with two binding
sites, one in the nanomolar range and one in the low
micromolar range (KD1= 10 nM; KD2= 1 μM in the presence
of calcium; KD1=22 nM; KD2= 2 μM in the presence of
EDTA). Sorcin also binds cisplatin, with a KD= 1.7 μM (one
binding site, Supplementary Figure S1). Fluorescence titra-
tions (Figures 1b and c,Supplementary Figure S2) were
carried out by measuring the fluorescence at 280 nm upon
stepwise doxorubicin addition to Sorcin (Figure 1b) and to the
Sorcin calcium-binding domain (SCBD, Figure 1c), compris-
ing residues 32–198 of Sorcin. The fitting of fluorescence
titrations for both Sorcin and SCBD are compatible with 2
doxorubicin binding sites (Figure 1, Supplementary
Figure S2), with affinity constants in the same order of
magnitude with respect to those measured by SPR experi-
ments, that is, 1.4± 1 and 734±396 nM for SCBD and
0.9±0.5 and 511± 140 nM for Sorcin in the presence of
EDTA (1.2 and 360 nM; 0.9 and 318 nM for Sorcin, in the
presence of 1 and 5 mM magnesium, respectively): doxor-
ubicin binding occurs at the C-terminal calcium-binding

domain, since SCBD retains the binding sites. Signal shift
was not detected, indicating that the environment of
fluorophores did not change upon doxorubicin binding. The
value obtained for KD1 is lower than protein concentration,
condition that can cause an overestimation of the constant
and large errors. We could not lower protein concentration
due to the signal/noise ratio; however it can be assessed that
KD1 is not greater than estimated.
Therefore, Sorcin, which was previously shown to increase

resistance to a variety of chemotherapeutic agents, is able to
bind directly and with high affinity doxorubicin and other
chemotherapeutic drugs in vitro; this prompted further experi-
ments to understand how such binding may contribute to
increase drug resistance in cells as a function of its expression
in the cell.

Crystal structure of the Sorcin-doxorubicin complex.
Addition of 4 : 1 molar excess of doxorubicin to a clear,
transparent solution of concentrated apo-Sorcin determines
clouding of the solution, aggregation and precipitation of the
protein (similar to the precipitation observed upon calcium
addition), with formation of a red precipitate and the slow
growth of red-colored crystals (Figure 2a).
Crystals of different intensity of red color grew depending on

the amount of doxorubicin used for crystallization, ranging
from 0.5 : 1 (colorless) to 2 : 1 (pink) to 15 : 1 (red) molar
excesses. Emission spectra of the crystals grown from these
solutions were recorded at 100 K in the Bessy facility, exciting
at 473 nm. Changes in peaks intensity and a 25 nm red shift of
the bands in high-amount doxorubicin (red crystals) were
observed with respect to low-amount doxorubicin Sorcin
crystals (Supplementary Figure S3). These changes are likely
due to doxorubicin stacking to aromatic residues of the protein
or doxorubicin dimerization, once bound.22

We solved the structure of the complex between SCBD and
doxorubicin (doxo-SCBD) at quite low resolution (3.74 Å, PDB
accession: 5MRA). The asymmetric unit contains two dimers
(A–B and C–D). The structure contains 10 Mg2+ ions (3 bound
to monomer A, 2 to monomer B, 3 to monomer C, 2 to
monomer D). Doxorubicin is bound to the B monomer. The
protein structure is similar to apo-Sorcin and apo-SCBD (PDB
accessions: 4UPG, 1 GJY14,23) (Figure 2b). The super-
imposition between the Cα trace of doxo-SCBD with the Cα

Figure 1 Sorcin binds doxorubicin with high affinity in vitro. (a) SPR titration experiments in the presence of 500 μM CaCl2 and (b,c) fluorescence titration experiments in the
presence of 0.5 μM EDTA: Doxorubicin binding to Sorcin (b) and SCBD (c) monitored by intrinsic fluorescence quenching. Each protein was incubated for 3 min at 25 °C in the
presence of increasing concentration of ligand. The bars indicate the standard deviation for three independent experiments. The insets show the whole emission peak for each
sample from one representative experiment. Both Sorcin and SCBD contain two binding sites for doxorubicin, with affinities in the nanomolar and low micromolar range
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trace of apo-Sorcin yields an rmsd of 1.11 Å, indicating that the
structures are similar and therefore neither Mg2+ ions binding
nor doxorubicin binding are able to promote the conforma-
tional changes induced by calcium ions in Sorcin. In
accordance with binding experiments, doxorubicin binding
occurs at two sites. Inspection of the Fo-Fc electronic density
map allowed the identification of two peaks (Supplementary
Figure S4): one close to the EF5 hand, which does not bind
calcium in Sorcin and is responsible for dimer formation, and
the other close to the D-helix connecting the EF2 and EF3
sites at the interface between the two dimers. We succeeded
in modeling the doxorubicin molecule in the first site (close to
the EF5) whereas it was not possible to model the doxorubicin
molecule in the second site (close to the D helix) indicating
both the low occupancy of the site and the flexibility of the
doxorubicin molecule (Supplementary Figure S4). These sites
have been previously identified as Pocket 1 and Pocket 2, able
to bind protein targets, in another PEF protein, that is, PDCD6
(ALG-2).24

The binding of doxorubicin to SCBD in pocket 1 involves a
stacking interaction of the drug with the aryl ring of Tyr188 of
one monomer and interaction with Asp177, Gly182, Phe173
and Phe134 of the two-fold symmetry related monomer at the
dimeric interface (Figures 2b and c). In the second putative site
(pocket 2) doxorubicin likely interacts with Trp105 and

Phe134. Probably doxorubicin binding to the second site
would be facilitated by the binding of calcium ions which, as
previously described,14 induce a conformational change
promoting the movement of the D-helix and the exposure of
hydrophobic interfaces.
In the structure, magnesium is bound to EF3 and to part of

EF1 and EF2 sites, showing that in Sorcin the first three
EF-hands can bind not only calcium, but alsomagnesium, with
rather high affinity, and that EF3 is the site endowed with the
highest affinity for divalent cations, responsible for Sorcin
cation-dependent activation.

Sorcin localization responds to doxorubicin treatment.
In H1299 lung cancer cell line, Sorcin (green fluorescence)
localizes to cell membrane, nucleus, ER and cytosol, as
already observed in other cellular systems.17 Upon treatment
with doxorubicin, Sorcin localization changes with respect to
control: after 1-h doxorubicin treatment, cytosolic Sorcin
localization increases and nuclear, ER and membrane
localization decreases; the ratio of cytosol/(nuclear+ER)
Sorcin fluorescence increases by 77% (from 0.278 to
0.491, number of cells= 60, Po0.01, Figure 3). This is a
clear indication that Sorcin localization responds to
doxorubicin treatment and that Sorcin presumably binds
doxorubicin also in the cell, upon drug entry.

Figure 2 Sorcin calcium binding domain-doxorubicin complex. (a) Crystal and (b) crystal structure of Sorcin calcium binding domain-doxorubicin complex; (c) doxorubicin
binding site at EF5 (pocket 1), stacked to Tyr188

Figure 3 Sorcin localization changes upon doxorubicin treatment. Sorcin localization (green fluorescence) in (a) control H1299 cells and in (b) H1299 cells treated for 1 h with
0.6 μM doxorubicin. (c) ratio between cytosol/(nucleus+ER) fluorescence (n= 60 cells; Po0.01)

Mechanism of Sorcin-dependent multidrug resistance
I Genovese et al

3

Cell Death and Disease



Effect of Sorcin expression on doxorubicin uptake and
toxicity, and cell death. Sorcin is expressed at high levels in
human and in many cell lines (PaxDB). We have analyzed
Sorcin expression in different cell lines from lung, cervix and
breast cancers and we evidenced that Sorcin is expressed in
all tested cell lines, but the levels differ even by more than one
order of magnitude between different lines. In particular,
Sorcin is highly expressed in lung cancer cell lines Calu-1
and H1299, that we have selected for further studies, and in
breast cancer cell lines MDA-MB-231 and MDA-MB-468,
while low Sorcin expression levels were observed in lung
A549 and in cervical cancer HeLa cells (Figure 4).
Sorcin high level of expression occurs in cell lines rather

resistant to cell death upon treatment with doxorubicin, as
H1299, Calu-1 and MDA-MB-468 cells, while A459 and HeLa
cell lines, where Sorcin expression is lower by about 90%, are
more sensitive to doxorubicin treatment (Figure 4). To support
the relevance of Sorcin in doxorubicin treatment response, we
proceeded with Sorcin silencing experiments. In all tested cell
lines, siRNA cds3 effectively silences Sorcin expression, by at
least 85% after 24–48 h (Supplementary Figure S5A). In the
H1299 line, 94±3% silencing occurs. Interestingly the
silencing of Sorcin expression is also maintained upon
doxorubicin treatment (Supplementary Figure S5B).
Sorcin silencing by siRNA cds3 (versus control experiments

with scrambled siRNA) slightly increases cell death
(Figures 5a and b,Supplementary Figure S6), as shown by
both cell count and by flow cytometry experiments on cells

Figure 4 Sorcin expression versus cell death. (top) Western blot experiment showing the expression of Sorcin in lung carcinoma Calu-1, A459 and H1299 cells; cervix
adenocarcinoma HeLa; breast adenocarcinoma MDA-MB-468 and MDA-MB-231. (bottom) Cell death is increased upon 24 h doxorubicin (0.6 mM) treatment in A549 and HeLa
cells, where Sorcin expression level is reduced by 480% with respect to H1299 cells

Figure 5 Sorcin silencing increases cell death upon treatment of H1299 cells with
0.6 mM doxorubicin. (a) Cell count and (b) cell death percentage upon treatment of
H1299 cells with scrambled siRNA or Sorcin siRNA in control and doxorubicin-
treated cells
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stained with Sytox blue, a cyanine dye that is completely
excluded from live eukaryotic cells.
Upon Sorcin silencing, doxorubicin-dependent cell death is

markedly increased in H1299 cells (Figure 5): upon treatment
with scrambled siRNA and 0.6 μMdoxorubicin, the percentage
of deadH1299 cells increases from 3.4% (control) to 4.6% and
16.3% (24 and 48 h after doxorubicin treatment, respectively),
while upon treatment with Sorcin-directed siRNA and 0.6 μM
doxorubicin, the percentage of dead H1299 cells increases
from 4.5% (control) to 10.3% and 29.7% (+124% and +82%,
24 and 48 h after doxorubicin treatment, respectively).
Further, Sorcin silencing increases doxorubicin entry in

H1299 cell nuclei by 140% as shown by analysis of confocal
microscopy experiments (Figures 6a and b). FACS experi-
ments (Figure 6c,Supplementary Figure S7) show that upon
treatment with scrambled siRNA and 0.6 μM doxorubicin, the
percentage of doxorubicin incorporation increases from 0.4%
after 30 min to 3.4% after 1 h to 49.6% after 3 h doxorubicin
treatments, while upon treatment with Sorcin-directed siRNA
and 0.6 μM doxorubicin, the percentage of doxorubicin
incorporation increases from 0.8% after 30 min to 7.1% after
1 h to 72.7% after 3 h doxorubicin treatments (+100%, +109%,
+47%, respectively). After 5 h incubation with doxorubicin, the
buffering capacity of Sorcin is almost lost (Supplementary
Figure S7).
In the presence of high levels of Sorcin, doxorubicin is

therefore prevented from entering the nuclei of H1299 cells,

and the cells are protected from drug-dependent DNA
damages.
Sorcin protects cells, while Sorcin silencing increases

doxorubicin-dependent Poly(ADP-ribose)polymerase (PARP)
cleavage (Figure 6d,Supplementary Figure S8), an apoptotic
marker. In cells treated with Sorcin-directed siRNA, 48 h after
treatment with 0.6 μM doxorubicin, the levels of cleaved PARP
are higher than in control cells. An even higher increase of
doxorubicin-dependent PARP cleavage upon Sorcin silencing
in doxorubicin-treated cells can be measured by calculating
the ratio between the intensities of cleaved versus full-
length PARP.

Effect of Sorcin expression on MDR1 expression and
activity. The effect of Sorcin expression on doxorubicin
uptake and toxicity can be explained in part by the direct
binding of doxorubicin by Sorcin, that may prevent the drug
entry in the nucleus. However, doxorubicin is also a substrate
of the efflux pump MDR1,2 whose gene is located in the same
amplicon of Sorcin gene.5 Conflicting results are in literature
on the effect of Sorcin expression on MDR1 expression and
activity.10–13

Figures 6e and f show that Sorcin silencing decreases both
MDR1 expression and activity in H1299 cells, as already
demonstrated in A549 cells25 by about 40%. In cells treated
with Sorcin-directed siRNA the MDR1-mediated efflux of
rhodamine123 is substantially decreased with respect to
control cells treated with scrambled siRNA, showing a

Figure 6 Sorcin silencing increases doxorubicin accumulation in H1299 cells. (a) confocal microscopy images, showing the nuclear accumulation of doxorubicin upon 3 h
treatment in H1299 cells treated with scrambled siRNA (top) or with Sorcin siRNA (bottom); (b) nuclear doxorubicin incorporation by fluorescence quantification (n= 60 cells;
Po0.0001); (c) time-dependent quantification of doxorubicin incorporation in H1299 cells by FACS; (d) upon 48 h doxorubicin treatment, in Sorcin-silenced cells PARP cleavage
is increased with respect to control cells (n= 3, Po0.01). Sorcin silencing decreases MDR1 activity and expression with respect to control cells: (e) Rhodamine123 fluorescence
is increased (and therefore its efflux is decreased) and (f) MDR1 expression is decreased in Sorcin-silenced H1299 cells with respect to control cells (n= 3, Po0.001)
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decrease of the activity of MDR1 in Sorcin-silenced cells
(Figure 6e,Supplementary Figure S9): the level of intracellular
rhodamine123 in H1299 cells treated with Sorcin-directed
siRNA is increased by 27, 51 and 67% (upon 30 min, 1 h and
2 h incubation with the MDR1 substrate, respectively) with
respect to control cells.
MDR1 expression level is also strongly decreased by Sorcin

silencing: in cells treated with Sorcin-directed siRNA, a 45%
decrease in MDR1 level occurs with respect to H1299 control
cells (Figure 6f, Supplementary Figure S10).

Discussion

The high level of expression of Sorcin in many tumors,
especially the MDR ones, the inverse correlation of Sorcin
expression with patients’ response to chemotherapies and
overall prognosis, and reversal of drug resistance upon Sorcin
expression by RNA interference have recently struck the
attention of many scientists. In particular, Sorcin has been
shown to be upregulated in doxorubicin-induced MDR K562/
A02 leukemia cells over their parent cells, and Sorcin
overexpression has been demonstrated to increase drug
resistance to doxorubicin, etoposide, homoharringtonine,
vincristine, taxol, cisplatin and 5-fluorouracil in several cancer
cells.6,26–32 Further, many studies have demonstrated Sorcin
participation in several processes, such as drug efflux
regulation, apoptosis modulation and EMT control, that might
contribute to the onset of MDR in human cancers.8,9

However, the molecular basis of Sorcin-linked processes
that determine MDR has not been elucidated yet.
Here, we show for the first time that Sorcin is itself able to

bind directly and with high affinity chemotherapeutic agents
able to induce Sorcin-dependent MDR, such as cisplatin,
vinblastine, paclitaxel and in particular doxorubicin. SPR and
fluorescence titration experiments demonstrated that Sorcin
binds doxorubicin with high affinity and that there are at least
two doxorubicin-binding sites. The low resolution X-ray
structure of the complex allowed the identification of at least
one of these sites. Doxorubicin binds to regions that in
PDCD6, structurally similar to Sorcin, are involved in ALIX-Abs
peptide binding:24 binding occurs with 100% occupancy and
high affinity to Pocket 1 and with lower occupancy to Pocket 2.
Sorcin can therefore use the same pockets in different
fashions: they not only can bind calcium channels and other
proteins (RyR receptors, SERCA, NCX1), and regulate their
activity, thereby increasing Ca2+ accumulation in the endo-
plasmic (ER)/sarcoplasmic reticulum (SR), and increasing
resistance to ER stress,17,19,20,21,33,34 but can also bind
chemotherapeutic drugs with high affinity, decreasing
doxorubicin-dependent toxicity and cell death. In addition,
the present study shows that in H1299 cells expressing high
Sorcin levels, upon doxorubicin treatment Sorcin acquires a
more diffused cytosolic pattern, implying that doxorubicin can
be bound and sequestered by Sorcin (which is one of the most
expressed calcium-binding proteins) in the cytosol, before it
can translocate to the nucleus and exert its toxic effects at
cellular level.
These experiments contribute to elucidate the mechanisms

of drug resistance to chemotherapeutic agents in highly
Sorcin-expressing cells. Doxorubicin binds at the D-helix

connecting EF2 and EF3 sites of Sorcin, thereby covering this
area and impairing the Trp105-based interaction with its
targets located on cell membranes and ER surface14,16,21,35,36

and at Tyr188 and Arg174 residues, belonging to the putative
Nuclear Localization Sequence of Sorcin,17 thereby hamper-
ing Sorcin translocation to nucleus.
Doxorubicin sequestration impairs its chemotherapeutic

action, based on drug entry in the nucleus and its intercalation
in the DNA, and allows its MDR1-based extrusion. Possibly, in
a first phase, MDRmay depend predominantly on doxorubicin
sequestration. In the longer term, sequestration reaches
saturation, and MDR depends predominantly on the higher
MDR1-based extrusion.
We also show that when Sorcin expression is decreased,

the cells become sensitive to doxorubicin: the chemother-
apeutic drug can accumulate in the nucleus, where it exerts
cytotoxic effects by inhibiting topoisomerase II, thereby
generating free radicals and DNA damages, and activating
death pathways via activation of caspases, disruption of
mitochondrial membrane potential or mitotic catastrophe
accompanied by senescence-like phenotype.37 Chemother-
apeutics binding to Sorcin is a fast process that results in fast
cellular response to drug administration: Sorcin, one of the
most highly expressed calcium-binding proteins, can act as a
buffer for drugs, within a limited time span. Sorcin is a signaling
protein, because of its ability to respond rapidly to calcium
binding and, as we have demonstrated, to other molecules,
such as doxorubicin. In addition, alteration of the cellular levels
of Sorcin is a slower process, that impacts on MDR1
expression and that results in another mechanism of Sorcin-
dependent drug resistance: Sorcin overexpression induces
MDR1 expression via a cAMP-response element (CRE) of the
MDR1 gene, and therefore through activation of the CREB
pathway, by increasing CREB1 phosphorylation and the
binding of CREB1 to the CRE sequence of mdr1 promoter.13

Sorcin silencing determines a decrease of activity and
expression of MDR1, that pumps doxorubicin and many other
drugs outside of the cell, in line with data from other resistant
lung carcinoma cells or other tumors.13,25 Sorcin silencing,
combined to doxorubicin treatment, make cells prone to death.
Sorcin also participates in other mechanisms related to
oncogenesis and MDR onset, since it increases escape from
apoptosis, by preventing ER stress and the unfolded protein
response, by upregulating Bcl-2 and decreasing Bax
expression.17,33,38–40

The structure of doxorubicin-bound Sorcin deserves some
comments. Doxorubicin binding increases the disorder of the
crystal and decreases the resolution of the structure with
respect to those from unliganded protein. Addition of
doxorubicin to a solution of concentrated apo-Sorcin deter-
mines clouding of the solution, aggregation and precipitation
of the protein, followed by formation of a red precipitate and the
slow growth of red-colored crystals. However, the structure of
the Sorcin-doxorubicin complex is very similar to that of the
apo protein, possibly because of the presence of magnesium
in the crystallization solution. Magnesium binds to EF1, EF2
and EF3, in line with the affinity for calcium, which follows the
order EF34EF24EF1.36 While calcium binding to Sorcin
determines a large conformational change and protein
activation, neither magnesium binding nor doxorubicin binding
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alters the structure. This can be due to the smaller ionic radius
of magnesium with respect to calcium, and to crystal lattice
forces that may favor an apo-like conformation. Generally
speaking, calcium-dependent regulation of cellular activities is
based on transient and/or local increase of Ca2+ concentration
from 100 nM to low micromolar, while Mg2+ concentration
remains constant at about 0.5–2 mM, that is, 2–4 orders of
magnitude higher than Ca2+. Usually EF-hand proteins
discriminate against Mg2+, being evolved to take advantage
of the larger ionic radius and the less stringent demands on
coordination ligands of Ca2+.41 Sorcin, at least in conditions
where Mg2+ is very concentrated, is able to bind with full
occupancy this ion. However, possibly calcium binding can
elicit conformational changes that may lead to a better
exposure of doxorubicin-binding pockets.
Overall our study demonstrates that Sorcin is able to bind

directly and with high affinity doxorubicin and other che-
motherapeutic drugs, and that this contributes to the genera-
tion of the MDR phenotype. This work, together with other
recent papers, shows that Sorcin can be a useful marker of
MDR and may represent a therapeutic target for reversing
tumor MDR.

Materials and Methods
Surface plasmon resonance (SPR) experiments. SPR experiments
were performed with a SensiQ Pioneer apparatus. Wild-type human Sorcin was
immobilized via amine coupling onto a COOH5 sensorchip, previously chemically
activated by 100 μl injection of a 1 : 1 mixture of N-ethyl-N′-3-(diethylaminopropyl)
carbodiimide (200 mM) and N-hydroxysuccinimide (50 mM). Immobilizations were
carried out in 20 mM sodium acetate at pH 4.5; the remaining ester groups were
blocked by injecting 100 μl of 1 M ethanolamine hydrochloride at pH 9.5.
The amount of immobilized Sorcin was detected by mass concentration-

dependent changes in the refractive index on the sensorchip surface, and
corresponded to about 5000 resonance units (RU).
Samples of analytes (doxorubicin, cisplatin, vinblastine and paclitaxel) were

dissolved in 100% DMSO at a concentration of 10 mM, and subsequently diluted in
sterile HEPES 20 mM, pH 7.4, NaCl 150 mM, 500 μM CaCl2 (or EDTA) 0.005%
surfactant P-20 to yield 2% DMSO final concentration (HSP-2%D buffer) and final
drug concentration: 200 μM. Further dilutions and all the experiments were carried
out at 25 °C in degassed HSP-2%D buffer.
For FastStep experiments, the analytes were automatically diluted in HSP-2%D

and injected by seven serial doubling steps (step contact time= 30 s, nominal flow
rate= 100 μl/min). At the following time points: (1) 0–30 s; (2) 31–60 s; (3) 61–90 s;
(4) 91–120 s; (5) 121–150 s; (6) 151–180 s; (7) 181–198 s, analyte concentrations
were: (1) 1.25 μM; (2) 2.5 μM; (3) 5 μM; (4) 10 μM; (5) 20 μM; (6) 40 μM; (7) 80 μM.
For OneStep experiments, Taylor dispersions were exploited to generate analyte
concentration gradients that provide high-resolution dose response in single
injections. Full analyte titrations were recorded in HSPC-2%D over four orders of
magnitude in concentration, up to 80 μM.
In both FastStep and OneStep experiments, the increase in RU relative to baseline

indicates complex formation between the immobilized Sorcin ligand and the analytes.
The plateau region represents the steady-state phase of the interaction. The
decrease in RU after 198 s in FastStep experiments, or after 350 s in OneStep
experiments, indicates analyte dissociation from the immobilized Sorcin after
HSP-2%D buffer injection. As a negative control, sensor chips were treated as
described above in the absence of immobilized Sorcin. Values of the plateau signal at
steady-state (Req) and full fittings with 1, 2 and 3 sites were calculated from kinetic
evaluation of the sensorgrams using the Qdat 4.0 program.

Fluorescence titrations. Static fluorescence measurements were performed
at 25 °C with a Horiba Fluoromax-4 spectrofluorometer using 1-cm path-length
quartz cuvettes (slit width: 5 nm in excitation and emission). Fluorescence
measurements were performed on Sorcin and SCBD, a shorter construct missing
the first 32 residues, at two different concentrations: 30 nM and 37 nM, in Tris-HCl
10 mM, pH 7.5 and EDTA (0.5 μM) or MgCl2 (1 mM or 5 mM). The excitation

wavelength was set at 280 nm and emission spectra were collected in the 300–
400 nm range. Triplicate samples were measured; each figure represents the
average of three experiments.

Maximum emission occurs at 340 nm for SCBD and 338 nm for Sorcin. Upon
doxorubicin addition, fluorescence quenching was observed to a maximum extent of
about 60% in saturating condition. For each sample fluorescence was measured after
3 min of incubation.

Since doxorubicin absorbs light at 280 nm, fluorescence measurements are
affected by the inner-filter effect. The following formula was employed for correction:
Fcor= Fobs10^[(Aex)/2], where Fcor and Fobs are the corrected and observed
fluorescence intensities, respectively, whereas Aex is the absorbance of each
concentration of ligand at 280 nm [IFE-correction]. The effect is negligible at the
concentrations of doxorubicin used (5–3000 nM). Data were fitted with the software
Qtiplot assuming two independent binding sites. The equation used for data fitting is
the weighted sum of two independent binging events: K((k+c+x)− sqrt((k+c+x)2–4cx))/
(2c)+H((h+c+x)− sqrt((h+c+x)2–4cx))/(2c), where c is protein concentration, k and h
are the two binding constants, K and H are the fraction of signal due to each
binding event.

Crystallization, data collection and structure solution. Crystal-
lization experiments were performed with both human Sorcin and SCBD. Automated
crystallization screening and by-hand optimization were carried out at 298 K by
vapor diffusion method.

At first soaking technique was attempted but, while doxorubicin is deep red, the
crystals stayed uncolored; then we moved to co-crystallization. Since Sorcin
precipitates in presence of doxorubicin excess, trials were set up by adding the ligand
to the crystallization drop (0.4 μl of 0.5 mM protein+0.4 μl of reservoir+0.1 μl of
30 mM doxorubicin) to a ligand/protein ratio of about 15. Colored crystals, from light
pink to red, grew in many conditions but most of them resulted in poor diffraction. The
best data set collected was at 3.7 Å resolution, from a SCBD crystal grew in 0.2 M
MgCl2, 0.1 M Tris-HCl pH 7, 2.5 M NaCl. The crystals were cryoprotected by adding
40% w/v glucose to the mother liquor.

A single wavelength (0.9677 λ) data set was collected at ESRF at 100 K on the
ID30-A3 MASSIF3 beamline equipped with a Eiger-X-4M detector and processed
with XDS.42 Crystal parameters and data collection statistics are reported in Table 1.

The structure was determined by molecular replacement with the program
MOLREP43 (CCP4 suite) using the structure of the calcium-free human Sorcin

Table 1 Crystal parameters, data collection statistics and refinement statistics

PDB code 5MRA
Space group P21 21 21
Cell parameters (Å) a= 92.36, b= 104.98,

c=113.42
Asymmetric unit, residues Tetramer, 166 per

monomer
N° of bound ions 10 Mg++

Data reduction
Resolution range (Å) 48.31–3.74 (3.96–3.74)
Unique reflections 11800 (1845)
Completeness (%) 99.0% (97.2%)
Redundancy 6.53 (6.47)
Rmerge (%) 10.2 (113.3)
CC(1/2) 99.9 (64.7)
I/σ(I) 11.81 (1.45)

Data refinement
Resolution range (Å) 48.31–3.74 (3.83–3.74)
Rcryst (%) 19.6 (35)
Rfree (%) 28.5 (37)
rms (angles) (°) 1.324
rms (bonds) (Å) 0.01
Wilson B-factor (Å2) 162.2
Residues in core regions of the
Ramachandran plot (%)

90

Residues in allowed regions of the
Ramachandran plot (%)

10

Values in parentheses are for the highest-resolution shell
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(PDB entry 4UPG) as search model. Refinement was performed using the maximum-
likelihood method with the program REFMAC44 and model building with the program
Coot.45

Fluorescence emission spectra of SCBD-doxorubicin crystals were collected at
ESRF ID29S at 100 K and excitation wavelength 473 nm. The experimental setup is
described in more detail in a paper by Royant et al.46

Cell cultures and western blots. H1299, Calu-1, A459 human lung
carcinoma, HeLa human cervix adenocarcinoma, MDA-MB-468 and MDA-MB-231
breast adenocarcinoma cell lines were cultured in DMEM medium
(Gibco, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) with 10% FBS
(v/v) and 5% Penicillin/Streptomycin (v/v) at 37 °C in a balanced air humidified
incubator with 5% CO2.
The cells were lysed in a 2% SDS lysis buffer (25 mM Tris-HCl at pH 7.5, 100 mM

NaCl, 3 mM EDTA, 7% glycerol) with: NaF 1000 × , NaVO3 100 × , Na4PO7 20 × ,
Aprotinin 1000 × , Leupeptin 1000 × , PMSF 100 × protease and phosphatase
inhibitors as final concentrations.
Extracts were sonicated for 10 s and centrifuged at 12 000 r.p.m. for 10 min to

remove cell debris. Lysates were quantified in proteins content with Pierce BCA
protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions.
Thirteen percent acrylamide-bisacrylamide SDS gel electrophoreses were run for

sorcin, and 7% SDS-PAGE were run for PARP and MDR1. Proteins lysate content
was checked by S-Ponceau staining. Western blotting analysis was performed with
the following antibodies: rabbit polyclonal anti-human sorcin (home-made14), mouse
monoclonal anti-PARP (Cell Signalling, Danvers, MA, USA, #9532), mouse
monoclonal anti-MDR1 (Santa Cruz Biotechnology, Heidelberg, Germany, sc-
13131), mouse monoclonal anti-tubulin (Sigma-Aldrich, Darmstadt, Germany, cat.
T5168) and mouse monoclonal anti-bactin (Santa Cruz Biotechnology, sc-81178).
Goat secondary anti-mouse and anti-rabbit antibodies conjugated to horseradish
peroxidase were used (Bio-Rad, Hercules, CA, USA, cat. 170-6515, 170-6516).
Immunostained bands were detected by chemiluminescence (Chemidoc, Bio-Rad).

Doxorubicin treatment and silencing for sorcin. We performed a
dose-response curve (0.1 μM, 0.3 μM, 0.6 μM, 1.0 μM); 0.6 μM is the dose resulting
in the best evaluation of time-dependent accumulation, and is compatible with
doxorubicin plasma concentration 15 min to 2 h after treatment of many different
types of cancer.47 Doxorubicin concentration (0.6 μM) was used for most
experiments. H1299 cells were transfected with a solution composed by Optimem
medium (Gibco, Invitrogen, Thermo Fisher Scientific), Lipofectamine RNAimax
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA, cat.13778-030) and a final
concentration of 500 pM siRNA for sorcin (CDS3 and 3′UTR) (IDT sequence to
CDS3-exon3: 5′-GAUAGAUGCUGAUGAAUUGCAGAGA-3′; sequence to 3′UTR-
exon8: 5′-AGCUGUACACUUUCAAGUAAGAUCT)-3′, according to the manufac-
turer’s instructions. CDS3 siRNA silences both sorcin isoforms.18 After 48 h of
transfection, the medium was replaced with fresh DMEM (Gibco, Invitrogen, Thermo
Fisher Scientific) containing 0.6 μM doxorubicin. To evaluate doxorubicin incorpora-
tion, cells were treated with the drug in time-course experiments (30 min to 3 h
incubation for cytofluorimetry, 3 h and 5 h for confocal microscopy). The analysis of
biological effects of sorcin silencing was performed 24 h and 48 h after treatment.

Doxorubicin uptake (confocal microscopy and FACS). The uptake
of doxorubicin was evaluated through confocal microscopy and FACS (Fluorescent-
activated Cell Sorting) thanks to the autofluorescence of the molecule (excitation
wavelength 470 nm; emission wavelength 585 nm). To avoid cells drug saturation
the analysis was performed between 30 min and 5 h incubation.
For confocal microscopy, the medium was removed from the H1299 cells, then

washed with PBS. The cells were fixed in 2% paraformaldehyde for 10 min, washed in
PBS and incubated 7 min in TO-PRO-3 (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA, cat. T3605), dilution 1:3000. To avoid fluorophore quenching,
samples were covered with Vectashield Mounting Medium (Vector Laboratories,
Burlingame, CA, USA, cat. H-1000). Confocal images of slides were acquired at a
Leica laser scanning microscope TCS-SP2.
In order to have a quantitative readout on doxorubicin incorporation we performed

flow cytometry with CyAn ADP and Summit 4.3 software. The cells were dislodged
with trypsin 0.05% (Gibco, Invitrogen, Thermo Fisher Scientific), the emission of
doxorubicin was evaluated at 573 nm, and cells were gated as shown in
supplementary results. Data were analyzed with FCS4 express software.

Sytox blue assay and cell counts. To evaluate cell death we performed
assays with Sytox Blue Dead Cell Stain, for flow cytometry (Molecular Probes,
Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA, cat. MP34857). According
to the manufacturer’s instructions, 200 000 cells were sampled for each condition
and incubated 15 min at room temperature with Sytox blue 1:1000 dilution. The
samples were acquired at CyAn ADP by using Summit 4.3 software. The
fluorescence excitation of nucleic acids of dead cells was measured with 405 nm
violet laser light. Data were analyzed with FCS4 express software.
Lung, breast cancer cell lines and HeLa cells were treated 48 h with 0.6 μM

doxorubicin and the rate of Sytox blue incorporation was evaluated as
aforementioned.
Although this assay is very reliable, we evaluated the effect of sorcin silencing on

cell death with the traditional method of cell counts. The cells were dislodged diluted
1:1 with Trypan blue dye and counted in triplicates in a burker cell counting chamber.

Sorcin localization, confocal microscopy. H1299 cells were treated 1 h
with 0.6 μM of doxorubicin and processed as aforementioned for confocal
microscopy purpose. After paraformaldehyde fixation, cells were incubated 30 min
with a 1:200 dilution of primary antibody against Sorcin and, after PBS 1 × washing
steps, 30 min with Alexa Fluor 488 (Molecular Probes, Invitrogen, Thermo Fisher
Scientific)-conjugated secondary antibody against rabbit was used at a 1:500
dilution. A Leica laser scanning microscope TCS-SP2 device was used and images
were acquired with Leica confocal software.

Rhodamine123 incorporation. To ascertain whether sorcin silencing
affects MDR1 functionality in pumping out the drugs from the cell, we performed
a rhodamine123 accumulation assay. This dye is extruded outside the cells by
MDR1/MDR4 pumps. First the cells were silenced for 48 h, as mentioned, then a
time course accumulation assay was performed. We considered 250 000 cells each
time point (30 min, 1 h, 2 h) and the assay was carried out incubating the samples
at 37 °C in RPMI 1640 medium without and with 1 μM rhodamine123.
After incubation the samples were pelleted and washed twice in ice cold PBS 1 × .

Then they were analyzed at CyAn ADP by using Summit 4.3 software. The results
were evaluated with FCS4 express software.
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Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance 

phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell 

death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering 

apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent 

cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The 

X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural 

basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, 
involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening 
of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate 
in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by 
phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that 
carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in 

the midbody and is involved in the onset of apoptosis.

Sorcin (Soluble resistance-related calcium binding protein) is a calcium binding oncoprotein expressed 
at high levels in several human tumours, such as leukaemia, gastric, breast and ovarian cancers1–5. Sorcin 
gene is located in chromosome 7, in the same amplicon of other proteins involved in MDR (multidrug 
resistance) such as ABCB4 and ABCB1 (Mdr1); Sorcin is highly expressed in different chemoresistant 
cell lines, and its overexpression confers MDR in several tumors6–11. Treatment with antisense oligonu-
cleotides increases cell sensitivity for vincristine and other antitumor drugs, suggesting that sorcin might 
be a useful marker of MDR and a therapeutic target for reversing tumor MDR12,13.

Sorcin is also considered one of the main regulators of calcium-induced calcium release in the 
heart4,14–18. Sorcin is one of the most expressed calcium-binding proteins in human cells, especially in 
the brain and in the heart (PaxDb). In particular Sorcin is one of the most expressed calcium binding 
proteins in the amygdala, in the prefrontal cortex, in the hypothalamus and in many brain cancers 
(GeneAtlas U133A, gcrma), such as anaplastic astrocytoma, oligodendroglioma, glioblastoma19–21, and is 
considered a histological marker for malignant glioma4.

The Sorcin mechanism of action is not fully understood. However, we have shown that Sorcin is an 
essential protein, which activates and regulates mitosis and cytokinesis22. Our analysis of the interactome 
of Sorcin revealed calcium-dependent interactions with kinases playing key roles in cell-cycle progres-
sion, including Polo-like kinase 1 that phosphorylates Sorcin. In addition, Sorcin silencing blocks cell 
cycle progression in mitosis and induces cell death. Sorcin localizes at the nucleus, endoplasmic reticulum 
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(ER) and cell membranes during interphase, while during mitosis, Sorcin concentrates in the cleavage 
furrow (late telophase) and midbody (cytokinesis). Upon calcium binding, Sorcin undergoes large con-
formational changes, presumably involving exposure of hydrophobic surfaces, that allows it to inter-
act with calcium channels, pumps and exchangers like ryanodine receptors (RyRs), sarco(endo)plasmic 
reticulum Ca2+ ATPase (SERCA), L-type voltage-dependent calcium channels and Na+-Ca2+ exchangers 
(NCX), and to regulate them14–17,23,24. Sorcin regulates calcium homeostasis by binding calcium, binding 
to and regulating the activity of calcium channels and other proteins; as a consequence, Sorcin increases 
Ca2+ accumulation in the endoplasmic (ER)/sarcoplasmic reticulum (SR) and mitochondria. Sorcin pre-
vents ER stress, and its silencing triggers apoptosis22,25,26. Knockdown of Sorcin in fact results in major 
defects in mitosis and cytokinesis, increase in the number of rounded polynucleated cells, blockage of cell 
progression in G2/M, apoptosis and cell death. ER stress is involved in the accumulation and deposits of 
misfolded proteins in many neurodegenerative diseases; Sorcin interacts in a calcium-dependent fashion 
with alpha-synuclein and presenilin 2, two proteins involved in the pathogenesis of Parkinson’s disease 
and Alzheimer’s disease, respectively, in vitro, in cultured cells and in human brain27,28.

From a structural point of view, Sorcin belongs to the small penta-EF-hand (PEF) family29. Each mon-
omer of Sorcin homodimer is formed by two domains, i.e. a flexible, glycine-rich N-terminal domain 
and a C-terminal calcium-binding domain (SCBD), endowed with five EF-hands30,31. The SCBD can be 
divided in two regions: EF1–3 (residues 33–134), which binds calcium with high affinity, and EF4–5 
(residues 135–198), which mediates dimerization. Upon calcium binding Sorcin undergoes a large con-
formational change that allows it to bind and regulate a series of target proteins in a calcium-dependent 
fashion32–34. However, the structural basis of its activation and of its ability to establish calcium-dependent 
interactions with targets is unclear. In addition, the peptide binding motifs are not known, despite the 
identification of several target proteins.

To investigate the structural basis of Sorcin activation and of selective calcium-dependent signal trans-
duction, we here solved the structure of the apo Sorcin (apoSor) and, for the first time, the structure of 
Sorcin in the calcium-bound form (CaSor). The structures have been compared with each other and with 
those of other PEF proteins evaluating: i) the internal variability of Sorcin; ii) the effect of the calcium 
binding on the single EF-hands; iii) the effect of the calcium binding to the overall protein fold. The com-
parison reveals potential surfaces of interaction between Sorcin and its targets. We further established 
consensus Sorcin-binding motifs in absence and presence of Ca2+. Finally, we validated interactions 
between Sorcin and a molecular partner endowed with such sequences, such as PDCD6 (programmed 
cell death protein 6, formerly called Alg-2), a PEF protein with similar mechanism of activation but 
different role in the cell with respect to Sorcin, through Surface Plasmon Resonance experiments and in 
the fibroblasts by co-localization experiments. Our study shed new light on the molecular basis of Sorcin 
activation, i.e. the structural changes induced by calcium binding in Sorcin, and on Sorcin mechanism of 
action, i.e. the interaction of Sorcin with its molecular partners, which leads to regulation of cytokinesis, 
to protection from apoptosis and to the establishment of MDR phenotype.

Results

Overall structures and calcium coordination. We solved structures of Sorcin in complex with 
calcium (CaSor) and in the apo form (apoSor), at a higher resolution than the one solved by Xie et al.31. 
Structures statistics are reported in Table 1. All the structures have the typical fold of the PEF proteins 
family. Briefly, the monomer is formed by two domains: a Gly-rich N-terminal domain (residues 1–32), 
partially visible in both apo and calcium-bound structures (residues 30–32 and 26–32, respectively), and 
a calcium binding domain (SCBD), containing eight α -helices (A-H) organised in five calcium binding 
motifs (EF1-EF5). Two helices are very long and connect two adjacent EF hands: the D-helix (hD) is 
common to EF2 and EF3, while the G-helix is common to EF4 and EF5 (Fig.  1). EF1 is structurally 
coupled with EF2, and EF3 is paired with EF4. Sorcin dimerization occurs by pairing of the EF5 of two 
monomers.

In CaSor, Ca2+ is bound at EF1, EF2 and EF3 and it is hepta-coordinated in a classical pentagonal 
bipyramidal configuration (Fig. 2 and Table S1). EF1 and EF2 are coupled by Gln48, which coordinates 
the EF1-bound Ca2+, whereas in EF2 is hydrogen-bound to Thr89.

Comparison of human Sorcin structures: conformational changes induced by calcium bind-

ing. The comparison between all the known human Sorcin structures (apo human Sorcin, PDB code: 
1JUO; apo-F112L human Sorcin mutant, PDB code: 2JC2; apoSor, PDB code: 4UPG; CaSor, PDB code: 
4USL) shows that the EF1–3 region is more flexible than the EF4-EF5 region and that a large conforma-
tional change in the EF1-EF2 subdomain and EF3 is visible upon calcium binding to the first three EF 
hand motifs16,31. Indeed, the rmsd values (Table S2) measured by superimposing CaSor to the apoSor 
clearly indicate that upon calcium binding Sorcin undergoes a large conformational change, mainly 
involving EF1, EF2 and EF3 (Table S2, Fig. 3). As shown in Fig. 3, calcium binding to EF1, EF2 and EF3, 
i.e. the three EF hands with the highest affinity for the cation33, induces a large displacement (of about 
21°) of the D-helix). The comparison between apoSor and the calcium-bound Sorcin structures sheds 
light on the mechanism of cation-mediated structural changes of Sorcin, which is fundamental for the 
comprehension of its function. The binding of calcium at the EF3 loop causes the movement of the three 
ligands Asp113, Asp115 and Ser117 towards the bidentate Glu124 ligand in the E-helix. Thus, the loop 
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undergoes a rearrangement and may act as a lever dragging the long and rigid D-helix away from the 
E-helix. As a result, EF3 acts as a pivot: the first half of the calcium binding domain (formed by A-, B-, 
C- and D-helices) rotates and moves away from the second half (formed by the E-, F-, G- and H-helices), 
which is the dimerization subdomain and forms the stable Sorcin dimeric interface.

Calcium binding and mechanism of activation: comparison with PDCD6 (Alg-2). Sorcin binds 
calcium at EF1, EF2 and EF3 hands. In order to investigate the role of each calcium binding site, we 
analysed each EF hand separately and evaluated the structural variation induced upon ion binding. For 
the sake of simplicity, the local conformational change has been evaluated by measuring the variation of 

PDB code

apoSor CaSor

4UPG 4USL

Space group I422 C2221

Cell parameters (Å) a =  b =  106.4, c =  77.5 Å a =  52.4, b =  111.6, 
c =  60.5

Asymmetric unit (residues) Monomer (30–198) Monomer(12–17, 26–198)

N° of bound ions — 3 Ca2+

Resolution ranges (Å) 2.1–50.0 (2.1–2.2) 1.65–50 (1.65–1.69)

Unique reflections 23604 (4375) 41040 (3051)

Completness (%) 99.7 (98.2) 99.5 (99.6)

Redundancy 6.8 (7) 3.4 (3.3)

Rmerge (%) 11 (59) 4 (66)

CC(1/2) 99.8 (88.2) 99.9 (83.3)

I/σ (I) 14.8 (3.6) 21.57 (3.0)

Resolution ranges (Å) 2.10–40.59 (2.10–2.15) 1.65–37.34 (1.65–1.69)

Rcryst(%) 18.1 (23.4) 19.1 (32.9)

Rfree(%) 21.9 (30.0) 22.1 (33.3)

rms (angles) (°) 1.46 1.32

Rms (bonds) (Å) 0.01 0.01

Wilson B-factor (Å2) 29.3 21.6

Residues in core regions of the 
Ramachandran plot (%) 98.8 99.4

Residues in allowed regions of the 
Ramachandran plot (%) 1.2 0.6

Table 1.  Crystal parameters, data collection statistics and refinement statistics of Sorcin in the apo 
form (apoSor) and in complex with Ca2+ (CaSor). Values in parentheses are for the highest-resolution 
shell.

Figure 1. Overall structure of calcium-bound human Sorcin. (A) The monomer comprises a part of the 
flexible N-terminal domain containing an alpha helical region designated α 0 (red) and a calcium-binding 
domain (SCBD) that can be divided in two region: EF1-3 (blue) and EF4-5 (green). Calcium ions (yellow 
spheres) are bound at EF1, EF2 and EF3. The helices (A-H) and the EF-hands (EF1-5) are indicated. (B) 
Dimerization occurs through the pairing of EF4-5 of two monomers (cyan and magenta). The N-terminal 
hexapeptide modeled in the structure is shown as green sticks.
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the angle between the two helices of each EF-hand motif in the structures of Sorcin and of other PEF 
proteins, whereas the overall conformational change has been evaluated by measuring the variation of the 
angle between the D- and G-helices, which takes into account the movement of the EF1-EF2 sub-domain 
and EF3 with respect to the EF4 and EF5 hands (Table 2).

Figure 2. Calcium coordination in Sorcin. Close-up of Ca2+ binding sites in EF1 (A), EF2 (B) and EF3 
(C) reveals the classical pentagonal bipyramidal geometry. The involved residues are shown as sticks, water 
molecules as red spheres and calcium ions as yellow spheres. Ligand positions and coordination distances 
are listed.

Figure 3. Conformational changes induced by ion binding. The superposition of CaSor (magenta) and 
apoSor (blue) reveals the conformational variation induced by calcium (yellow spheres). The green arrows 
represent the axis of the D helix in the two structures: the binding of three Ca2+ to each Sorcin monomer 
causes a large movement of the D helix that drags the EF1-EF2 region. The panels illustrate the changes of 
EF1, EF2 and EF3 taken alone, analysed aligning the C-terminal helix for each EF-hand: EF1 and EF3 open 
upon Ca2+-binding, while EF2 is almost unchanged.
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The PEF proteins are divided in two sub-groups on the basis of the residues present on the EF1 loop; 
in the group I the EF1 loop is formed by 11 residues whereas in the group II, to which Sorcin belongs, 
the EF1 loop is formed by 12 residues35. The proteins for which both the structures in the apo form and 
in the presence of a saturating amount of calcium were determined and deposited in the PDB, have been 
chosen to be compared with Sorcin structures: human PDCD6 (PDB codes: 2ZND, 2ZN936), represent-
ative of the group I, and rat m-calpain PEF domain dVI (PDB codes: 1AJ5, 1DVI37), representative of 
the group II.

This analysis shows that in Sorcin both EF1 and EF3 hands are widely opened upon calcium binding 
(variation of the angle between the helices of the EF hand, θ =  +18.4° and +14.5° respectively), while 
EF2 displays only a minimal variation (θ =  − 3°).

The comparison with other PEFs is informative and interesting. PDCD6 binds Ca2+ (or Zn2+) at 
EF1, EF3 and EF5 but the local conformational changes (θ =  +3.2°, + 4.8°, − 8.6°) are smaller than those 
observed in Sorcin. On the contrary calpain-dVI, which binds Ca2+ at the same sites as Sorcin (plus a 
fourth Ca2+ not bound at an EF-hand), shows a similar change for EF1 and EF3 (θ =  ~20°, ~14°) and an 
evident opening of EF2 (θ =  ~10°). The open question is how the local conformational changes described 
so far can be transmitted to the overall structure.

As already discussed, in Sorcin the opening of EF3 causes the exposure of a hydrophobic surface with 
the shift of the EF1-EF2 sub-domain and EF3 with respect to the EF4-EF5 sub-domain (Fig. 3). The var-
iation of the angle between D-helix and G-helix can be used as an indicator of such movement and, as 
already stated, is of about 21°. As shown by the structural analysis of CaSor the opening of EF1 causes the 
exposure of an additional hydrophobic surface. The opening of EF1 and EF3 causes the exposure of two 
distinct hydrophobic surfaces that likely mediate the interaction of Sorcin with its molecular partners.

Calcium binding to PDCD6 does not cause large conformational changes. Indeed, the superim-
position between the calcium bound and the apo PDCD6 monomers using the Cα  atoms, yields a 
rmsd =  1.20 Å and the angle between the D- and G-helices varies only by 2°; the main effect is observed 
on the EF5 hand where the binding of calcium causes a slight twisting movement and opening of the 
dimer. Interestingly the hD-hG angle in both the apo and the calcium bound form of PDCD6 has a 
value similar to that measured in CaSor (75°–80° vs 78°) suggesting that the two proteins may share 

Prot (pdb)
EF1 (θ) 
[A-B]

EF2 (θ) 
[C-D]

EF3 (θ) 
[D-E] 

EF4 (θ) 
[F-G]

EF5 (θ) 
[G-H]

D-helix vs 
G-helix (θ)

θ θ θ θ θ

hSorcin

 ApoSor (4UPG) 40.8° 60.7° 52° 47.3° 32.9° 57.5°

 CaSor (4USL)
59.2° 57.9° 66.5° 45.9° 29.9° 78.1°

+Ca +Ca +Ca — —

 ∆  (+ Ca) +18,4° − 2.9° +14.5° − 1.40° − 3° +20.6°

hPDCD6

 PDCD6-apo (2ZND) 68.8° 51.5° 59.2° 56.5° 35.8° 80.2°

  PDCD6+ Ca (2ZN9) 
A =  B

72° 52.6° 64° 58.4° 27.2° 82.2°

+Ca — +Ca — +Ca

+ 3.2° + 1.1° + 4.8° + 2.1° −8.6° +2°

  hPDCD6-Zn-Alix 
(2ZNE)

67.2 55.4 62.4 60.5 A =  31.7 
B =  36.6

A =  74.5 
B =  75.4

+Zn — +Zn x2 — +Zn

 ∆(+ Zn, + pep) 
− 1.5° + 4° + 3° + 4° A =  − 4° A =  − 5.7°

B =   +1° B =  − 4.8°

rCalpain-dVI

 apo monA (1AJ5) 40.3° 53.6° 30° 51.5° 28° 47°

 apo monB (1AJ5) 41.2° 52° (54°)* 33.6° (28.5°)* 44.5° 20.5° 48.6°

 +  Ca (1DVI)
61° 63° (71°)* 46.2° (42°)* 49.4° 23.4° 52.3°

+Ca +Ca +Ca — —

 ∆ (+ Ca) 
+20.7° + 9° +16° + 1.6° − 3° +5.3°

+19.7° + 11° +12° + 3° + 4° +3.7°

Table 2.  Effect of ion binding on EF-hands in PEF proteins. The angle between the helices has been 
calculated with PyMol. The angle between helices D and G is reported (θ), as an indicator of the movement 
of sub-domain EF1-EF2-EF3 with respect to EF4-EF5.
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similar target binding sites, with the difference that PDCD6 sub-domains are always in the active overall 
conformation and therefore only minor variations are necessary to allow target binding. Ca2+-dependent 
activation of PDCD6 is ascribed to the movement of the side chain of Arg125, belonging to the loop 
between EF3 and EF4, that uncovers and makes accessible the hydrophobic pocket already present in 
the apo form36.

Analysis of Sorcin solvent-accessible surface areas. The analysis of solvent accessible surface 
areas has been performed with areaimol (CCP4 suite, http://www.ccp4.ac.uk/html/areaimol.html) and 
shows that upon calcium binding there is an increase in the exposed surface areas of several residues. The 
residues with a difference in SASA (Solvent Accessible Surface Areas) higher than 30% between the apo 
and the calcium bound form of Sorcin are Tyr67, Ser80, Met81, Met86, Ile110, Arg116, Gly118, Ser143 
and Ser197 (Table S3, Fig. S1). As shown in Fig. 4A, the residues displaying the highest SASA (higher 
than 30%) are located in the loop preceding the C helix (hC), in the EF2 loop (which follows the hC), 
in the C-terminal part of the D-helix and in the EF3 loop; all these structural features present a wide 
calcium-dependent rearrangement.

Even if, as shown in Table  2, ion binding has almost no effect on the relative position of helices C 
and D of EF2 hand, upon ion binding there is a reorganization of the last part of the helix C containing 
Met81 and of the loop 83–91 containing Met86, which become exposed to the solvent. Tyr67 is placed on 
the loop between helices B and C, and in apoSor it is hydrogen bonded to Asp113 of the EF3 loop and is 
partially covered by it. Upon calcium binding this interaction is broken since Asp113 participates in ion 
coordination; the rearrangement of the EF3 loop causes also the exposure of Arg116 (Fig. 4, panel B).

We further analysed the CaSor structure using the Hotpatch server (http://hotpatch.mbi.ucla.edu/) 
in order to identify unusual hydrophobic patches likely mediating protein-protein interactions between 
Sorcin and its molecular partners38. The Hotpatch analysis highlights that besides Met86 (cyan) and 
Tyr67 (green), each Sorcin monomer has two significant regions consisting of three different zones, 
shown in Fig.  4C. The pink one includes His108 and Met132 (pocket 1), the red one Met81, Val101, 
Trp105, Val164 (pocket 2) and the orange one Ala26, Phe27, Pro28, Pro34, Leu35, Tyr36, Gly37, Tyr38, 
Ser61, Trp99 (pocket 3). Interestingly, these clusters are found in the areas most affected by calcium 
dependent structural changes, namely EF1 (orange residues) and EF3 (red and pink residues). Moreover, 
both areas include tryptophan residues (Trp99 and Trp105) strongly conserved among the PEF protein 
family members. Supporting the importance of these regions in ligands binding, Colotti and coworkers 
previously demonstrated that mutation of Trp105 impairs the capacity of Sorcin to recognize and interact 
with RyR2 and annexin 7 at physiological calcium concentrations39.

Analysis of N-terminal peptide-Sorcin interaction and comparison with the PDCD6-Alix 
structure. The analysis of the CaSor structure reveals the presence of an electron density peak in the 
cavity formed upon calcium binding and the consequent tilt of the D-helix. We fitted this electronic den-
sity map with the GYYPGG hexapeptide belonging to the N-terminal region of Sorcin (residues 12–17). 
The same region was thought to interact with PDCD6 N-terminal peptide by Jia et al.40; Suzuki et al. 
demonstrated that it probably was PEG36. We can exclude PEG binding to Sorcin structure: the Fo-Fc 
and 2Fo-Fc electron density maps shows clearly the presence of a short peptide containing side chains 
with a very well resolved proline residue clearly visible in the structure (12-GYYPGG-17; Fig.  5, Fig. 

Figure 4. Solvent accessible surface analysis and hot-spots prediction. (A) The residues that upon calcium 
binding become more accessible (SASA increase higher than 30%) are mapped as red sticks on CaSor 
structure; Tyr67 and Met86 show the strongest variation. (B) In apoSor (blue) Tyr67 forms a hydrogen bond 
with Asp113. In CaSor (magenta) the hydrogen bond is broken and the loop moves away together with helix 
B and the EF1-EF2 region. (C) Hotpatch analysis identified 3 pockets (pocket 1, magenta; pocket 2, red; 
pocket 3, orange) likely mediating protein-protein interactions.

http://www.ccp4.ac.uk/html/areaimol.html
http://hotpatch.mbi.ucla.edu/
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S2), belonging to a different dimer. The interacting surface between the N-terminal peptide and Sorcin 
was analysed using the program ePISA (http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver). The 
residues buried at the interface between peptide and Sorcin are: Met78, Met81, Leu82, Glu97, Ala100, 
Val101, Gly104, Trp105, His108 placed on the D helix; Phe112 on the EF3 loop; Thr131, Met132, on the 
EF4 loop; Val164, Arg167, and Asp171 on the G helix. Trp105, Glu97 and Arg167 form hydrogen bonds 
with Tyr13 and Tyr14 of the peptide (OH Tyr13-OE2 Glu97 =  2.78 Å; O Tyr13-NE1 Trp35 =  2.74 Å; O 
Tyr14-OE2 Glu97 =  2.90 Å) (Fig. 5B). The residues laying on the D helix play a major role in interacting 
with the N-terminal peptide; in particular, Trp105 establishes a strong stacking interaction with Pro15 
and is hydrogen bonded to the carbonyl group of Tyr13, determining the orientation of the peptide into 
the pocket which is opposite to that of Alix in PDCD6 (see below). These residues belong to pockets 1 
and 2, identified by Hotpatch analysis (Fig. 4C).

The calcium-dependent movements of the EF3 loop determine conformational changes of different 
extent in the PEF proteins (Fig.  S3). As shown in Table  2, the opening of D and G helices opening is 
quite similar in zinc-bound PDCD6 complexed with Alix and CaSor complexed with the N-terminal 
peptide (the measured angles between the D and G helices are 78° and 82° respectively). As described 
by Suzuki and co-workers36, the peptide binds to two juxtaposed hydrophobic pockets (1 and 2), which 
hold PPYP and YP, respectively. The residues lining the pocket 1 are Gly123, Tyr124, Arg125, Thr162, 
Phe165, Gln172, Gly174 and the residues lining the pocket 2 are Met71, Phe72, Tyr91, Asp94, Trp95, 
Phe122, Gln159. More recently a third pocket has been identified in PDCD6 (Pocket 3) capable to bind 
the type 2 motif PXPGF present in Sec31A41. Pocket 3 is formed by residues belonging to EF1, the EF1–
EF2-connecting loop, EF2, EF3 and EF4 (Phe27, Val31, Val35, Leu48, Ala51, Leu52, Ser53, Gly55, Trp57, 
Phe85, Val88, Trp89, Ile92, Thr93, Gln96, Phe99, Gly108, Met109, Phe148). Our structures obviously do 
not contain peptides bound to this pocket, but we cannot rule out the possibility of peptide binding to 
this site.

The superimposition between Alix-bound PDCD6 and CaSor clearly shows that these pockets are 
present both in both proteins, and the structural alignment reveals that many of the residues lining 
the pockets are conserved in Sorcin (underlined residues in Fig. 6D). In particular, relevant conserved 
residues are: Trp95 (Trp105, Sorcin numbering) which establishes a strong stacking interaction with the 
proline of the N-terminal peptide and in Sorcin was demonstrated to be necessary for the interaction 
with its molecular partners; Arg125 (Arg135, Sorcin numbering) whose mutation to alanine caused a loss 
of binding ability of PDCD6 to Alix; and Met71 (Met81, Sorcin numbering) which was demonstrated to 
be one of the residues changing more its SASA and that was suggested by Hotpatch analysis to be one 
of the residues mediating Sorcin interactions. A significant difference concerns Tyr91 that in Sorcin is 
substituted by Val101, allowing the interaction already described between Trp105 and Tyr13 (Figs 5B–D 

Figure 5. Interaction between Sorcin and the N-terminal peptide. (A) The electrostatic surface potential 
(blue-positive, red-negative) of CaSor dimer is shown. The hydrophobic surface corresponding to pockets 
1–2 accommodates the 12-GYYPGG-17 peptide (green) plausibly belonging to an adjacent Sorcin molecule 
in the crystal (green cartoon); the residues 11–25 are not visible (green dashes). (B) Close-up of the peptide-
binding region: the peptide is shown as green sticks, the residues interacting with the peptide are depicted 
as magenta sticks, and the hydrogen bonds between Trp105-Tyr17 and Glu97-Tyr17 are indicated as black 
dashes. (C,D) Two views of the electron density map of the peptide (2Fo-Fc, contoured at 1σ ).

http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
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and 6B) that partially explains the opposite orientation of the N-terminal peptide in Sorcin with respect 
to Alix peptide in PDCD6.

Todd and coworkers showed that calpastatin interacts with residues belonging to A and C helices of 
the calpain-dVI in the open conformation42, corresponding to pocket 3 identified by Hotpatch analysis 
in Sorcin (data not shown). In particular two hydrophobic residues of calpastatin, namely Leu606 and 
Phe610, were found to be necessary for the interaction with calpain. The pocket where Leu606 binds is 
lined by several bulky aromatic residues (Phe99, Phe162 and Trp166) and a variety of other hydrophobic 
residues (Leu102, Leu106, Ile121 and Val125); Phe610 binds to a large hydrophobic pocket formed by the 
B helix and N-terminal part of the D helix and is in close van der Waals contact with residues His129 and 
Gln173. Two of the three aromatic residues binding calpastatin belonging to the D helix are conserved 
in Sorcin (Phe95, corresponding to Phe162 in calpain-dVI, and Trp105 corresponding to Trp166 in 
calpain-dVI), whereas the residues indicated to line the hydrophobic pocket where Leu606 of calpastatin 
binds are not conserved but anyway are substituted by hydrophobic residues (Leu106 is substituted by 

Figure 6. Peptide binding and pockets comparison in CaSor and PDCD6. (A) The superimposition of 
CaSor (magenta; calcium in yellow, peptide in green) and PDCD6 (teal; zinc in grey) in complex with Alix 
peptide (yellow) shows that the protein have a similar conformation and that both peptides bind in pocket 
2 but in opposite direction, as indicated by arrows. (B) The main residues lining pocket 2 are shown 
(Sorcin numbering); note the presence of Val101 instead of Tyr91. (C) The pockets predicted by Hotpatch 
in CaSor (left, same color code as Fig. 4C) and the pockets found in PDCD6 (right) by co-crystallization 
with Alix peptide (yellow) and Sec31A peptide (cyan) are mapped on the surfaces and indicated by 
arrows. (D) Structural alignment of Sorcin and PDCD6. The residues corresponding to the hexapeptide 
are in bold. The residues lining the pockets are colored accordingly and the ones present in both sequences 
are underlined.
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an alanine residue, Ile121 is substituted by a leucine and Val125 is substituted by a leucine). The residues 
His129 and Gln173 are not conserved in Sorcin whereas also in Sorcin the B helix and N-terminal part of 
the D helix are lined by residues forming a hydrophobic pocket, namely Phe156 (Phe224 in calpain-dVI) 
and Leu102 (substituted by Ile169 in calpain-dVI).

Phage display selection in presence of EDTA and Ca
2+

. To investigate if the structural changes 
conferred by the Ca2+ binding translate into specificity changes, we used Sorcin as a bait protein against 
a highly diverse M13 phage display library that displays 16mer peptides on the major coat protein p8. 
Selections were performed in the presence of EDTA (1 mM) or Ca2+ (1 mM) and were in both cases 
successful as judged by pooled phage ELISAs (i.e. signal to background > 2). Sequencing of individual 
clones (38 and 20 clones from the selections in presence or Ca2+ and EDTA, respectively) revealed that 
the majority of ligands contains a conserved Pro and that the main consensus motif under both condi-
tions is a relaxed Φ /Gly/Met-Φ /Gly/Met-x-P, where Φ /Gly/Met is an aromatic residue (Trp, Tyr or Phe) 
or a Gly or Met residue, and x is any amino acid (Fig. 7A, Fig. S4). The consensus sequence agrees with 
the GYYPG peptide belonging to the Sorcin N-terminal domain, identified in the Sorcin binding site in 
our crystal structure. In addition, there is a set of peptides that lack a clear Φ /Gly/Met-Φ /Gly/Met-x-P 
motif but instead hold an acidic-Φ  motif (Fig. 7). Such peptides are more frequently observed in presence 
of Ca2+ (47% of sequenced peptides) than in the presence of EDTA (15% of sequenced peptides). In a 
cellular context, likely Sorcin can establish interactions with a variety of ligands containing the main Φ /
Gly/Met-Φ /Gly/Met-x-P motif, or the acidic-Φ  motif found in intrinsically disordered regions of target 
proteins. Such interactions might be facilitated by the exposure of hydrophobic binding surface in Sorcin 
upon Ca2+ binding, as suggested by the structure. However, peptide binding might occur also in absence 
of Ca2+ if the preferred target is readily available as in the high avidity p8 phage display. Indeed, the 
presence of a high affinity ligand might shift the equilibrium towards the open conformation. Further 
detailed mechanistic studies should shed light on this issue.

Selective calcium-dependent interactions between Sorcin and targets. The interactions 
between Sorcin and PDCD6 (programmed cell death protein 6) (formerly called Alg-2) a member of 
the PEF protein family, endowed with Sorcin N-terminal consensus binding motifs was tested by both 
SPR and colocalization experiments. PDCD6 has a role in the mechanisms of apoptosis onset, and was 
shown to interact with N-terminal peptide of annexin 11 in the presence of 50 µ M Ca2+, with a higher 
affinity than Sorcin43. PDCD6 has 36% identity with respect to Sorcin, displays similar structure and 
displays residues as Trp95 Arg125 and Met71, conserved also in Sorcin, which allow its interaction with 
Alix36 and potentially with the sorcin N-terminal domain. Moreover, PDCD6 displays an N-terminal 
domain similar to that of sorcin, and containing Φ /Gly/Met-Φ /Gly/Met-x-P sequences identified as 
Sorcin-interacting motifs.

SPR experiments show that both the whole Sorcin and SCBD are able to interact with PDCD6 in 
the presence of calcium, with a KD =  3.5 µ M (Fig. 8A). In the presence of EDTA, SCBD interacts with 
PDCD6 with a KD =  5 µ M whereas the calcium-free Sorcin interacts with PDCD6 with an even lower 
affinity (KD =  12 µ M Fig. 8B). Both association and dissociation are faster in the presence of calcium than 
in the presence of EDTA. The N-terminus has therefore an inhibitory activity in Sorcin-PDCD6 inter-
action at low calcium concentrations. Additionally, both Sorcin and SCBD interact with the N-terminal 
domain of PDCD6, with KD =  5 µ M for Sorcin and KD =  6 µ M for SCBD (Fig. 8C). Partial colocalization 

Figure 7. WebLogo outputs of consensus peptide motifs identified through peptide phage display.  
(A) The Φ /Gly/Met-Φ /Gly/Met-x-P motif is based on 34 unique peptide sequences, of which 20 were 
obtained from a phage selection performed in the presence of 1 mM Ca2+. (B) The acidic-Φ  motif is from 
18 unique peptides of which 16 were selected in presence of Ca2+.
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Figure 8. Interaction of Sorcin with full-length PDCD6 and N-terminus of PDCD6. (A) Sensorgrams 
showing the interaction between PDCD6, immobilized on a COOH5 chip and different concentrations of 
Sorcin (left panel; from bottom to top: 200 nM, 400 nM, 800 nM, 1.5 µ M, 3 µ M, 6 µ M), and SCBD (right 
panel; from bottom to top: 50 nM, 100 nM, 200 nM, 500 nM, 1 µ M, 2.5 µ M, 5 µ M), in the presence of 100 µ M 
calcium. (B) Sensorgrams showing the interaction between PDCD6, immobilized on a COOH5 chip and 
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Figure 9. Colocalization of Sorcin with PDCD6 and annexins 7 and 11. (A) Experiments showing 
co-localization between sorcin (rabbit α -sorcin, green) and PDCD6 (mouse α -PDCD6, red), in 3T3-L1 
preadipocytes in cytokinesis (top panel) and differentiated 3T3-L1 adipocytes (bottom panel) in X and Z 
axes. Bars: 10 µ m. Note the colocalization in the midbody of 3T3-L1 preadipocytes and in the perinuclear 
region of adipocytes. (B) Experiments showing co-localization between Sorcin (mouse α -sorcin, green) and 
annexin11 (top panel: rabbit α -annexin11, red), or annexin7 (bottom panel: rabbit α -annexin7, red), in 3T3-
L1 preadipocytes in cytokinesis. Bars: 10 µ m. Note the colocalization in the midbody (arrows and insets).

different concentrations of Sorcin (left panel: from bottom to top: 1.3 µ M, 4 µ M, 12 µ M), and SCBD (right 
panel: from bottom to top: 1.25 µ M, 2.5 µ M, 5 µ M, 10 µ M), in the presence of 1 mM EDTA. (C) Sensorgrams 
showing the interaction between the N-terminal domain of PDCD6, immobilized on a COOH5 chip and 
different concentrations of Sorcin (left panel; from bottom to top: 750 nM, 1.5 µ M, 3 µ M, 6 µ M, 12 µ M), and 
SCBD (right panel; from bottom to top: 750 nM, 1.5 µ  µ M, 3 µ M, 6 µ M, 12 µ M), in the presence of 100 µ M 
calcium. (D) Scatchard plots of the experiments in Fig. 8A–C, and linear fittings. Red squares: PDCD6-
Sorcin interaction in the presence of 100 µ M calcium; red circles: PDCD6-SCBD interaction in the presence 
of 100 µ M calcium black squares: PDCD6-Sorcin interaction in the presence of 1 mM EDTA; black circles: 
PDCD6-SCBD interaction in the presence of 1 mM EDTA; red triangles: N-terminal domain of PDCD6-
Sorcin interaction in the presence of 100 µ M calcium; red crosses: N-terminal domain of PDCD6-SCBD 
interaction in the presence of 100 µ M calcium.
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between Sorcin and PDCD6 takes place in perinuclear regions of differentiated 3T3-L1 adipocytes and 
in the midbody of 3T3-L1 preadipocytes (Fig. 9A). Sorcin also colocalizes with annexin 7 and annexin 
11, which possess N-terminal domains containing Φ /Gly/Met-Φ /Gly/Met-x-P sequences, in the midbody 
of 3T3-L1 preadipocytes (Fig. 9B).

Discussion

Sorcin is overexpressed in several tumor cells as an adaptive mechanism to prevent ER stress and escape 
apoptosis triggered by chemotherapeutic agents, prompting its further investigation as a novel molecular 
target to overcome MDR26. The present study discloses the structural changes induced by calcium bind-
ing in Sorcin and sheds light on the mechanism of interaction of Sorcin with its molecular partners, and 
thereby on Sorcin-dependent regulation of cytokinesis and establishment of MDR phenotype.

The binding of calcium to Sorcin promotes a large conformational change, which involves a tilt of the 
D-helix with respect to the G-helix, with EF3 acting as a hinge (Fig. 3). This movement, as displayed in 
Table 2, is about 21° and is the highest among the PEF family members. Ca2+ binds to the three high 
affinity calcium binding sites EF1, EF2 and EF3. Calcium binding to EF1 and EF3 causes a large reor-
ganization of the EF hands and the consequent movement of the EF helices one in respect to the other, 
whereas calcium to EF2 determines only a local reorganization of the residues of the EF2 loop.

The large D-helix displacement causes the rotation of the EF1-EF2 subdomain (containing A, B, C 
and D helices) with respect to the EF3-EF4-EF5 subdomain (containing E, F, G and H helices). From 
the structure it is not possible to understand which is the calcium binding EF-hand endowed with the 
highest affinity. However, calcium binding studies performed in solution by spectroscopic methods on 
wt Sorcin and site specific mutants clearly showed that EF3 is the highest affinity site, because when 
Glu124 (the bidentate ligand in EF3) is mutated the affinity for calcium of the entire protein dramat-
ically decreases33. Mutation in the bidentate Glu94 or Glu53 (placed on the EF2 and EF1 loops) has 
milder effects on overall Sorcin calcium affinity and on Sorcin ability of interacting with target proteins. 
The superimposition (Fig.  3) between the CaSor and apoSor shed light on the mechanism of Sorcin 
activation induced by the calcium binding to EF3: the binding of the cation promotes the movement 
of three calcium ligands (Asp113, Asp115 and Ser117) towards the E-helix where Glu124, the bidentate 
ligand (Fig. 3), is located and consequently, a large movement of the D helix with respect to the E helix 
(about 15°, see Table 2). This movement is transmitted to the EF1-EF2 subdomain via the Tyr 67 placed 
in a strategic position, in the middle of the loop connecting EF1 to EF2, and anchoring the EF1-EF2 
subdomain to the EF3 loop. The binding of calcium to EF3 causes the breakage of the hydrogen bond 
between Asp113 (one of the calcium ligands of EF3) and Tyr67 and consequently the hC and hB helices 
are free to move.

The structural analysis shows that upon calcium binding there is the formation of two possible inter-
action sites per monomer. A site (pocket 1 +  2 in the Hotpatch analysis) is lined by residues of the 
C-terminal part of the D helix and residues of the EF3-hand, which in PDCD6 is the site of interaction 
with Alix. Another potential site (pocket 3 in the Hotpatch analysis) involves the EF1 and EF2, which 
in calpain-dVI bind calpastatin and in PDCD6 binds Sec31A41,42. Interestingly, the interaction with a 
N-terminal peptide is similar to that of the peptide bound by PDCD6, and the stacking interaction with 
the proline of the peptide and Trp105 is conserved between the two structures. It confirms that Trp105 
is a residue with a key role in the recognition of hydrophobic Pro-containing peptides in both PEF 
proteins. The peptide phage display experiments confirm that Sorcin binds preferentially Pro-containing 
peptides. This analysis further suggests an alternative binding motif (acidic-Φ ). The interaction with 
the latter motif appears to be promoted by calcium binding. Positively charged residues located in the 
EF-loop (Arg135) and at the G-helix (Arg174, Arg175, Arg176), close to pocket 2, or His108 in pocket 
1 are possibly responsible for the binding of these peptides.

Thus, Sorcin may interact via both its N-terminal domain and its SCBD domain with proteins contain-
ing the Φ /Gly/Met-Φ /Gly/Met-x-P consensus motif, such as TRAP1, a global regulator of tumor metabolic 
reprogramming44, which contains a SIFYVPDMKP sequence that includes the consensus motif. In this 
framework, the SPR experiments carried out to study the interaction of Sorcin and SCBD with PDCD6 
demonstrates that the interaction takes place via sorcin C-terminal domain, because SCBD retains the 
ability to interact with the target. Moreover, the SPR experiments show that the affinity between SCBD 
and PDCD6 is higher than between PDCD6 and Sorcin, demonstrating that the N-terminal domain 
partially inhibits this interaction at low, physiological calcium concentration (in the presence of EDTA). 
These data shed light on the possible role of different splicing version of Sorcin, which mostly differ for 
the length of their N-terminus, and can interact in different fashion with different targets: the short, 
so called mitochondrial 19-kDa Sorcin B-isoform lacks the residues 2–17 (AYPGHPGAGGGYYPGG), 
which include the region that, in the crystal structure, interacts with the hydrophobic calcium-dependent 
pocket 1. The Sorcin B-isoform may therefore able to interact with targets with higher affinity than the 
A-isoform. The interaction of the N-terminal domain with the C-terminal domain of a neighbouring 
dimer may also be responsible for Sorcin oligomerization (Fig. 6).

Partial colocalization between Sorcin and PDCD6 takes place in perinuclear regions of differentiated 
3T3-L1 adipocytes and in the midbody of 3T3-L1 preadipocytes (Fig. 9). This interaction may be impor-
tant for the formation of this transient structure in the latest stage of cytokinesis. A competition between 
Sorcin and PDCD6 for similar targets may also take place, via pockets exposed to solvent upon calcium 
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binding. Interestingly PDCD6 has a mechanism of activation based on the switch of an arginine residue 
and this residue is conserved also in sorcin (Arg135, Sorcin numbering)36. Calcium-dependent inter-
actions with annexin 7 and annexin 11 in the midbody may also take place with the same mechanism.

In conclusion, in this paper the Ca2+-induced conformational change in sorcin has been investigated 
for the first time. We demonstrate that this change involves a large movement of the D-helix, which 
takes place in this extent only in sorcin among PEF proteins. Moreover, the study reported here gives 
the unique opportunity to visualize the interaction between the two sorcin domains: SCBD and the 
N-terminal domain. Finally, we demonstrate that the interaction between sorcin and its molecular part-
ners may take place via both the SCBD and N-terminal domain and that this latter domain may exert a 
regulative role by inhibiting in some extent the binding of sorcin to its protein targets.

Methods

Protein crystallization, data collection and data reduction. Recombinant proteins (human 
Sorcin, SCBD and PDCD6) were expressed in pET vectors (Novagen) in E. coli BL21(DE3) cells, purified 
according to published procedures18 and dialysed in 20 mM Tris-HCl, at pH 7.5. Automated crystalliza-
tion screening and by-hand optimization were carried out at 298 K by the hanging-drop vapor diffusion 
method. Since sorcin precipitates when it is saturated with calcium, we performed the starting crystalliza-
tion trials with commercial screens adding 5 mM CaCl2 in the reservoir before mixing the crystallization 
drops. ApoSor resulted to be rather prone to crystallization even in the presence of calcium; therefore, 
in order to discriminate between apoSor and CaSor crystals we performed all the crystallization trials 
in double, with and without calcium. The apoSor crystallization trials were performed using a protein 
sample concentrated to about 10 mg/ml. Aliquots (1 µ l) of the protein sample were mixed with an equal 
amount of reservoir solution containing 20–22% (w/v) polyethylene glycol 4000, 0.3–0.5 M ammonium 
sulfate. Crystals grew in 2 weeks and reached dimensions of 0.1 mm ×  0.2 mm ×  0.3 mm.

Crystals of CaSor were obtained by mixing 1 µ l of protein solution, concentrated to about 15 mg/
ml, using a reservoir solution containing: 20–25% (w/v) polyethylene glycol 3350, 0.5 M lithium sulfate, 
0.1 M Tris-HCl at pH =  8.5 and 5 mM CaCl2. For data collection, apoSor and CaSor were cryo-protected 
in a solution containing 80% (v/v) of mother liquor and 20% (v/v) polyethylene glycol 200. The crystals 
were mounted in nylon loops and flash frozen by quick submersion into liquid nitrogen and transported 
to the synchrotron-radiation source. Single-wavelength data sets (λ  =  1 Å) were collected from crystals 
of apoSor and CaSor at the 5.2 R beamline of the Synchrotron Radiation Source ELETTRA (Trieste, 
Italy), using a Pilatus 2 M detector at a temperature of 100 K. The data sets were processed with XDS45 
and scaled with XSCALE45. Crystal parameters and data collection statistics for the measured crystals 
are listed in Table 1.

Structure solution and refinement. The structure of apoSor was determined by molecular replace-
ment with the program MOLREP46 (CCP4 suite) using the structure of the calcium-free human Sorcin 
(PDB entry 1JUO)31 as search model.

The case of CaSor was more complex: first we solved the structure of SCBD (Sorcin Calcium Binding 
Domain) with calcium (Ca-SCBD, data not shown), using the structure of the calcium-free human 
Sorcin; then we used SCBD monomer to solve CaSor. Ca-SCBD crystallized in orthorhombic space 
group and the Matthews coefficient calculation indicated a dimeric asymmetric unit. The first attempts 
to solve the phase problem for Ca-SCBD using the whole apo-Sorcin dimer were unsuccessful, suggest-
ing a wide conformational variation. Based on previous published results we expected that the variation 
regarded mainly the EF1–2–3 subdomain. For this reason we performed the rotational and translational 
searches with a truncated apo-dimer including E-F-G-H helices (EF4–5 plus part of EF3), finding a 
partial solution. We fixed this solution and repeated the search using the rest of the apo-model (helices 
A, B, C, D). Refinements were performed using the maximum-likelihood method with the program 
REFMAC47 and model building with the program Coot48. The quality of the models was assessed using 
the program PROCHECK49. The structure of apoSor was refined to 2.1 Å resolution. The final model 
contains 168 residues (residues 30–198), 73 water molecules, 5 sulfate ions. The structure of CaSor was 
refined to 1.65 Å resolution. The final model contains 172 residues (residues 26–198), a six residues long 
peptide, 124 water molecules, 1 sulfate ion, 3 Ca(II) ions with full occupancy and 3 PEG molecules for 
each monomer.

PDB accession codes. The coordinates for apoSor have been deposited in the Research Collaboratory 
for Structural Bioinformatics (RCSB) PDB with accession code 4UPG. The coordinates for CaSor have 
been deposited in the RCSB PDB with accession code 4USL.

Phage Display. We used a phage library displaying 16mer randomized peptides (diversity 4 ×  1010) 
on the p8 protein flanked by spacer linkers at the N- and C- termini (SSSG- and GGGSGG, respectively). 
The library is similar to the previously established C-terminal library50, but displaying internal, instead of 
C-terminal, peptide stretches. Phage selections were performed in 5 rounds following the detailed pro-
tocols in ref. 51. To assess a potential calcium dependence of the interactions selections were performed 
in parallel using either 1 mM EDTA or 1 mM CaCl2 during the incubation of the phage library with the 
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bait protein as well as in all washing steps. Such an approach has previously been successfully used for 
the identification of calcium-dependent interactions for the calcium-binding protein S100B52. Clonal 
analysis and sequencing was performed as previously described53.

Cell cultures. Mouse 3T3-L1 preadipocyes (ATCCR CL-173TM, American Type Culture Collection) 
and 3T3-L1 adipocytes were grown on plastic dishes or 10-mm glass coverslips using Dulbecco’s modi-
fied Eagle’s medium supplemented with 10% calf serum, 4 mM glutamine, 50 mg/l streptomycin, 100 IU/l 
penicillin and non-essential amino acids at 37 °C in a humidified CO2 incubator. 3T3-L1 preadipocytes 
were differentiated into adipocytes as described by Tafuri, adding 7.5 µ M troglitazone in the medium on 
days 3 and 4 of differentiation54.

The mouse α -Sorcin (33–800) was from Zymed, the rabbit α -Sorcin was homemade, the rabbit 
α -annexin 11 (NB100–78588) was from Novus Biologicals, the rabbit α -annexin 7 (ABIN65268) and 
the mouse α -PDCD6 (H00010016-M01) were from Abnova.

For immunofluorescence staining, cells were plated and grown on 10 mm glass coverslips, fixed with 
2% paraformaldehyde for 20 min, permeabilized with 0.2% Triton X-100 for 10 min and incubated in 
50 mM glycine for 30 min more. Primary antibody dissolved in 1% bovine serum albumin was added 
and allowed to incubate overnight at 4 °C. Primary antibody was removed, wells washed and second-
ary AlexaFluor 488, 594 or 647 was added and incubated for 1 h at room temperature. Conventional 
immunofluorescence and confocal microscopy were performed using confocal LSM710 vertical and 
Axiovert135M microscope (Zeiss).

Surface Plasmon Resonance experiments. Surface Plasmon Resonance (SPR) experiments were 
carried out using a SensiQ Pioneer system. The sensor chip (COOH5) was activated chemically by a 
35 µ l injection of a 1:1 mixture of N-ethyl-N′ -(3-(diethylaminopropyl)carbodiimide (200 mM) and 
N-hydroxysuccinimide (50 mM) at a flow rate of 5 µ l/min. Ligands, i.e. PDCD6 and the N-terminal 
domain of PDCD6 (KMAAYSYRPGPGAGPGPAAGAALP; a lysine residue has been added to the 
sequence to ensure peptide immobilization principally via the N-terminus), were immobilized on acti-
vated sensor chips via amine coupling. The immobilizations were carried out in 20 mM sodium acetate 
at pH 4.5; the remaining ester groups were blocked by injecting 1 M ethanolamine hydrochloride (35 µ l). 
Proteins interacting with the ligands (in 10 mM Hepes pH 7.4, 150 mM NaCl +  0.005% surfactant P20) 
were injected on the sensor chip at a constant flow (30 µ l/min). The same procedure was set using the 
buffer with CaCl2 at 100 µ M concentration, or with 1 mM EDTA. The increase in RU relative to baseline 
indicates complex formation; the plateau region represents the steady-state phase of the interaction, 
whereas the decrease in RU represents dissociation of Sorcin or SCBD from immobilized ligands after 
injection of buffer. Regeneration procedures are based on two long (2000 s and 500 s) injections of buffer, 
separated by a brief (5 s) injection of 10 mM NaOH. The sensorgrams were analysed using the SensiQ 
Qdat program.
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