342 research outputs found

    2010

    Get PDF

    Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii.

    Get PDF
    SummaryThe green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin, however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic re-design of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to a reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C. reinhardtii, even at high light intensities. Under different growth conditions, the best performing CrBKT overexpression strain was found to reach ketocarotenoid productivities up to 4.5 mg L-1 day-1. Astaxanthin productivity in engineered C. reinhardtii shown here is competitive with that reported for Haematococcus lacustris (formerly pluvialis) which is currently the main organism cultivated for industrial astaxanthin production. In addition, the extractability and bio-accessibility of these pigments was much higher in cell wall deficient C. reinhardtii than the resting cysts of H. lacustris. Engineered C. reinhardtii strains could thus be a promising alternative to natural astaxanthin producing algal strains and may open the possibility of other tailor-made pigments from this host

    Applicazione Della Droplet Digital Pcr Per La Quantificazione Della Malattia Residua Minima Nella Leucemia Linfoblastica Acuta Pediatrica

    Get PDF
    La real-time PCR quantitativa (RQ-PCR) viene attualmente utilizzata per la quantificazione relativa della Malattia Residua Minima (MRM) nei la quantificazione relativa della Malattia Residua Minima (MRM) nei pazienti pediatrici affetti da LeucemiaLinfoblastica Acuta (LLA). Il recente sviluppo della Droplet Digital PCR (ddPCR) per la quantificazione assoluta potrebbe consentire di caratterizzare meglio i pazienti attualmentedefiniti positivi non quantificabili (NQ) in RQ-PCR

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    The polo-like kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia

    Get PDF
    CD56 is expressed in 15–20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56+ monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56+ AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML

    Management of toxicities associated with targeted therapies for HR-positive metastatic breast cancer: a multidisciplinary approach is the key to success

    Get PDF
    Purpose: Agents targeting HR-positive, HER2-negative locally advanced or metastatic breast cancer have improved patient outcomes compared with conventional single-agent endocrine therapy. Currently, approved targeted agents include everolimus and three CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib. Unlike the well-characterized and easily manageable safety profile of endocrine therapies, adverse events associated with targeted therapies are complex and potentially severe. Their prompt recognition and treatment, crucial for prolonged endocrine sensitivity and survival, may be challenging and requires a multidisciplinary effort and a good knowledge of drug interactions. Methods: We reviewed the current evidence on the drug safety of targeted agents for metastatic breast cancer currently used in clinical practice in Italy, supported by the clinical experience of Italian oncologists with expertise in the field. Results: All oncologists had used CDK4/6 inhibitors in clinical practice and/or within a clinical trial. The clinical management of toxicities, including dose adjustments, treatment interruptions, and concerns regarding special populations is discussed, and the management of relevant adverse events, related to individual agents and class-specific, toxicities is reviewed. Hematologic toxicities have the greatest impact on clinical management of the disease and on patients. Although toxicities associated with the new treatments result in more visits to the physician and more time and attention with patients, they are manageable, with no need for the oncologist to consult with specialist physicians. Conclusions: Based on the available evidence and current guidelines, we propose a series of practical recommendations for multidisciplinary clinical management of the various toxicities associated with the addition of targeted agents to endocrine therapy

    Adjuvant capecitabine in triple negative breast cancer patients with residual disease after neoadjuvant treatment: real-world evidence from CaRe, a multicentric, observational study

    Get PDF
    Background: In triple negative breast cancer patients treated with neoadjuvant chemotherapy, residual disease at surgery is the most relevant unfavorable prognostic factor. Current guidelines consider the use of adjuvant capecitabine, based on the results of the randomized CREATE-X study, carried out in Asian patients and including a small subset of triple negative tumors. Thus far, evidence on Caucasian patients is limited, and no real-world data are available. Methods: We carried out a multicenter, observational study, involving 44 oncologic centres. Triple negative breast cancer patients with residual disease, treated with adjuvant capecitabine from January 2017 through June 2021, were recruited. We primarily focused on treatment tolerability, with toxicity being reported as potential cause of treatment discontinuation. Secondarily, we assessed effectiveness in the overall study population and in a subset having a minimum follow-up of 2 years. Results: Overall, 270 patients were retrospectively identified. The 50.4% of the patients had residual node positive disease, 7.8% and 81.9% had large or G3 residual tumor, respectively, and 80.4% a Ki-67 >20%. Toxicity-related treatment discontinuation was observed only in 10.4% of the patients. In the whole population, at a median follow-up of 15 months, 2-year disease-free survival was 62%, 2 and 3-year overall survival 84.0% and 76.2%, respectively. In 129 patients with a median follow-up of 25 months, 2-year disease-free survival was 43.4%, 2 and 3-year overall survival 78.0% and 70.8%, respectively. Six or more cycles of capecitabine were associated with more favourable outcomes compared with less than six cycles. Conclusion: The CaRe study shows an unexpectedly good tolerance of adjuvant capecitabine in a real-world setting, although effectiveness appears to be lower than that observed in the CREATE-X study. Methodological differences between the two studies impose significant limits to comparability concerning effectiveness, and strongly invite further research

    The MLL recombinome of acute leukemias in 2017

    Get PDF
    Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients
    • …
    corecore