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Key Points

• MYC translocations represent
a genetic subgroup of
NOTCH1-independent T-ALL
clustered within the TAL/LMO
category.

• MYC translocations are
secondary abnormalities,
which appear to be
associated with induction
failure and relapse.

MYC translocations represent a genetic subtype of T-lineage acute lymphoblastic

leukemia (T-ALL), which occurs at an incidence of ∼6%, assessed within a cohort of 196

T-ALL patients (64 adults and 132 children). The translocations were of 2 types; those

rearrangedwith theT-cell receptor loci and thosewithother partners.MYC translocations

weresignificantlyassociatedwith theTAL/LMOsubtypeof T-ALL (P5 .018) and trisomies

6 (P < .001) and 7 (P < .001). Within the TAL/LMO subtype, gene expression profiling

identified 148 differentially expressed genes between patients with and withoutMYC

translocations; specifically, 77 were upregulated and 71 downregulated in those with

MYC translocations. The poor prognostic marker, CD44, was among the upregulated

genes. MYC translocations occurred as secondary abnormalities, present in subclones

in one-half of the cases. Longitudinal studies indicated an association with induction

failure and relapse. (Blood. 2014;124(24):3577-3582)

Introduction

MYC is one of the main phosphatidylinositol 3-kinase (PI3K)/
AKT targets, thus rearrangements underlying PI3K/AKT activa-
tion result in MYC overexpression. Deregulation of the PI3K/
AKT pathway plays a pivotal role in T-lineage acute lympho-
blastic leukemia (T-ALL), being constitutively activated in cases
with NOTCH1/FBXW7 (50%-60%) mutations, PTEN (10%-30%)
inactivation and PTPN2 (6%) deletions.1-4 These observations
have identified MYC as a key T-ALL oncogene and an effective
therapeutic target.5 The potential role ofMYC activation in initiating
T-ALL tumorigenesis has been demonstrated in transgenic zebrafish
and mouse models, where the induced over-expression of c-Myc lead
to T-ALL development with high penetrance and short latency.5-8

Moreover, in T-ALL murine models, c-Myc appeared to be critical
for leukemia initiation, maintenance, and self-renewal, as its sup-
pression, prevents leukemia development.9-11

We have characterized an emerging group of T-ALL with MYC
translocations, identifiedasa specific subgroupofNOTCH1-independent
TAL/LMO-positive leukemia, occurring in about 6% of adult and
childhood T-ALL.

Study design

To assess the incidence of MYC translocations in T-ALL, we investigated
64 adults and 132 children (supplemental Methods, available on the
BloodWeb site). Combined interphase fluorescence in situ hybridization
(CI-FISH) and/or Predictive Analysis of Microarrays12 classified 80% of
cases into groups according to distinct genetic features: TAL/LMO (57),
HOXA (49), TLX3 (31), TLX1 (16), and NKX2-1 (5), whose distribution
into age groups reflectedprevious studies (supplementalTable 1).Karyotyping,
CI-FISH, single nucleotide polymorphism array, and mutational anal-
ysis investigated concurrent genomic abnormalities (supplemental
Methods).12

Results and discussion

Incidence and type of MYC translocations

MYC translocations were detected in 12 of 196 cases of T-ALL
(6.1%) and were equally distributed between children and adults
(Table 1). They involved T-cell receptor (TCR) loci in 6 cases and
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new partners in the other 6. The 8q24 breakpoints clustered within
the telomeric region ofMYC in all TCR translocations, whereas in the
non-TCR translocations the 8q24 breakpointsmapped both telomeric
and centromeric toMYC (supplemental Figure 1)mirroring non-IGH
MYC translocations in B-cell ALL.13

Here, non-TCR translocation partners were assessed in 4 cases.
CDK6/7q21.2, rearranged in T-ALL with t(5;7)(q35;q21) and
TLX3 overexpression,14 was involved in cases 3 and 4. Hitherto-
undescribed breakpoints involved 1q32.1, in case 1, within a long
intergenic noncoding RNA, about 300 kb downstream of PTPRC
and Xq25, in case 7, in a no-gene region 5 kb upstream of SH2D1
(supplemental Figure 2). Whatever the partner, MYC translo-
cations resulted in MYC overexpression (Figure 1B). Remarkably,
common to all cases was MYC relocation close to genes which are
transcriptionally active in T lymphocytes (supplemental Figure 2).

In T-ALL, high MYC expression is mainly caused by molecular
mechanisms acting at the transcriptional or posttranscriptional level.15

In this study, we have shown that other genes/regions besides TCR
may be involved inMYC translocations and that the incidence ofMYC
translocations in T-ALL is higher than previously reported.

Genetic profile of T-ALL with MYC translocations

Similar to other type B abnormalities, MYC translocations were not
seen as isolated changes. In-depth molecular-cytogenetic character-
ization revealed from 2 to 9 abnormalities per case (median, 3.7)
(Table 1; supplemental Table 2). T-ALL with MYC translocations
clustered within the TAL/LMO category (Pearson x2, P 5 .018)
(Figure 1C). Complete or partial trisomies of chromosomes
6 (3 of 12, 25%) (x2, P, 0,001) and 7 (3 of 12, 25%) (x2, P, .001)
were significantly associated with MYC translocations and occurred
together in all cases (2, 7, and 11 from Table 1). Other cooccurring
abnormalities were CDKN2A/B deletions (CDKN2ABdel) (75%)
and PTEN inactivation, resulting from deletion or mutation
(PTENdel/mut) (58%). Similar results were found in the MOLT-16
and SKW-3/KE-37 cell lines with t(8;14)(q24;q11)/TCRAD-MYC.
In fact, they both carry SIL-TAL1 and/or LMO2 translocations as
primary abnormalities, and CDKN2ABdel and PTENdel/mut as addi-
tional hits (supplemental Table 3). PTEN inactivation in primary
samples as well as cell lines reflect results from experimental mouse
models, which have shown that c-Myc rearrangements and Ptendel

exert a synergistic effect in the development of T-ALL, appearing to
replace the function of Notch1.8,16 Interestingly, PTENdel/mut and
NOTCH1mutations were mutually exclusive in our cases, confirming
that they arise in different T-ALL subgroups.17 In a unique TLX1-
positive case (no. 12), the MYC translocation was associated with
PTPN2 loss. The 2 PTEN- and PTPN2-negative regulators of PI3K/
AKT signaling18 were inactive in ;65% of our cases, suggesting
that constitutive PI3K/AKT pathway activation is a critical synergis-
tic hit in this T-ALL subgroup.

MYC translocations identify a subgroup within the

TAL/LMO category

Within the set of 51 pediatric patients with TAL/LMO-positive
T-ALL, the 6 with MYC translocations belonged to the group with
the highest MYC expression, defined as the fourth quartile (Q4) based
on MYC expression. Supervised gene expression profiling analysis
of the Q4 group showed that patients with and those without MYC
translocations clustered separately (Figure 1D). A Shrinkage t test
revealed 148 genes differently expressed between the 2 groups
(supplemental Table 4). Namely, 77 were significantly upregulated
and 71 genes downregulated (local false discovery rate,0.05) in theT
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group withMYC translocations compared with the group without.
Specifically, a.1.3-fold change in CD44 expression was observed
in patients with MYC translocations, whereas NOTCH1 and genes
associated with NOTCH1 activation (PTCRA, NOTCH3, HES4,

and CR2) were significantly downregulated (Figure 1E-F). In
support of these results, gene set enrichment analysis confirmed
enrichment of genes in the NOTCH1 pathway in the group without
MYC translocations (q value 5 0.06; NES, 1.71) (supplemental

Figure 1. (A) Non-TCR partners of 3 cases of T-ALL (nos. 1, 4, and 7 from Table 1) with MYC translocations. Mapping of superenhancers at 1q32, 7q21, and Xq25

were indicated with 3 vertical thin bars. (B) MYC expression in 83 cases of pediatric T-ALL and in 8 MYC translocation–positive T-ALL (nos. 1-4, 9-12 from Table 1). Cases

with translocations had a significantly higher MYC expression. (C) Circos plot shows distribution of MYC translocations according to genetic categories. MYC

translocation–positive T-ALL clustered into the TAL/LMO category; (D) Supervised gene expression profiling analysis of 13 TAL/LMO-positive T-ALL with high MYC

expression at diagnosis (Q4): 6 cases withMYC translocations (nos. 1-4, 9, 10; Table 1) clustered together and separated from the 7 cases without. (E) Q4 TAL/LMO-positive

T-ALL: CD44 expression was higher in T-ALL cases with MYC translocation compared with cases without. (F) NOTCH1 expression was significantly lower in cases with MYC

translocations compared with cases without. (G) Longitudinal FISH studies in 2 cases: in case no. 11 the clone withMYC translocation was not detected at diagnosis but only

at relapse (left); in case no. 12, the small subclone (;8%) with theMYC translocation present at diagnosis was found in 100% of leukemic blasts at relapse. Q4, fourth quartile.
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Figures 3 and 4A). Gene set enrichment analysis further indicated
significant enrichment of cell death and apoptosis pathway genes in
patients harboringMYC translocations (supplemental Figure 4B-C).

MYC-positive subclones are associated with

relapse/induction failure

In case 12 (Table 1), paired diagnostic and relapse bone marrow
samples showed that the size of the subclone with MYC trans-
locations increased at relapse, rising from8% to 100%,whereas other
abnormalities, which were present either in the main clone, that is,
ETV6del, or in diverse subclones, such as WT1del and BCL11Bdel,
disappeared at relapse (Figure 1G). These findings are in line with
results from xenograft models19 which showed that MYC confers
a proliferative advantage and resistance to drug toxicity. It is
noteworthy that in mice c-Myc plays a crucial role in maintenance
and self-renewal of leukemia-initiating cells, which are thought
to be resistant to chemotherapy and mediate relapse.11 In case 11,
the MYC translocation, present at relapse, was not detected at
diagnosis, implicating that it was acquired during disease progres-
sion (Figure 1G). Taken together, these data suggest that identi-
fication and possible eradication of smallMYC-positive subclones at
diagnosis and/or during the early stages of treatment may assist in
prevention of disease progression. Notably,MYC translocations were
found in subclones of variable size (range, 8%-62%) in 4 additional
cases (Table 1).

Clinical and hematologic characteristic of T-ALL with

MYC translocations

MYC translocation–positive T-ALL is characterized by leukocy-
tosis and cortical/mature differentiation arrest in the majority of
cases. It was not possible to evaluate the prognostic implications
of MYC translocations in this retrospective study including
children and adults belonging to different treatment protocols.
However, poor prognostic markers, such as high CD44 expres-
sion and PTEN inactivation, appeared to be strongly associated
with this leukemia subgroup.20-23 Moreover, although determi-
nation of minimal residual disease, the most powerful criteria
used for risk stratification of pediatric ALL, classified case 2 into

the standard-risk group, this patient failed induction therapy and
died in disease. Similar to B-lineage ALL and acute myeloid
leukemia,24,25 in which disease relapse has been related to minor
leukemic subclones rather than to the predominant clone at
diagnosis, subclones with MYC translocations in T-ALL may be
more resistant to therapy and thus sustain relapse.

Acknowledgments

The authors thank Drs Francesca Grillo and Maddalena Paganin for
mutational analysis in selected patients belonging to the Associazione
Italiana Emato-Oncologia Pediatrica (AIEOP) protocol, Dr Giovanni
Roti for providing cell lines, and Drs Renato Bassan and Cristina
Morerio for providing biological samples.

C. Mecucci is supported by Fondo per gli Investimenti della
Ricerca di Base (FIRB 2011 RBAP11TF7Z_005), Associazione
Italiana per la Ricerca sul Cancro (AIRC IG 11512), and Fondazione
Cassa di Risparmio di Perugia (Cod. 2012.0108.021 Ricerca
Scientifica e Tecnologica). G.t.K. is supported by Fondazione
Cariparo Progetto d’Eccellenza.

Authorship

Contribution: R.L.S. andC.Mecucci conceived and designed the study;
C.S., C.J.H., A.L., G.C., S.C., andG. Basso provided studymaterials or
patient samples; C. Matteucci and A.G.L.F. provided mutational
analyses; R.L.S., C.B., G. Barba, V.P., G.t.K., and C. Mecucci ana-
lyzed and interpreted data; R.L.S. and C. Mecucci wrote the
manuscript; and all authors gave final approval of the manuscript.

Conflict-of-interest disclosure: The authors declare no com-
peting financial interests.

Correspondence: Cristina Mecucci, Hematology Unit, Univer-
sity of Perugia, Ospedale S.M. della Misericordia, 06156 Perugia,
Italy; e-mail: cristina.mecucci@unipg.it.

References

1. Kleppe M, Lahortiga I, El Chaar T, et al. Deletion
of the protein tyrosine phosphatase gene PTPN2
in T-cell acute lymphoblastic leukemia. Nat Genet.
2010;42(6):530-535.

2. Silva A, Yunes JA, Cardoso BA, et al. PTEN
posttranslational inactivation and hyperactivation of
the PI3K/Akt pathway sustain primary T cell leukemia
viability. J Clin Investig. 2008;118(11):3762-3774.

3. Zuurbier L, Homminga I, Calvert V, et al. NOTCH1
and/or FBXW7 mutations predict for initial good
prednisone response but not for improved
outcome in pediatric T-cell acute lymphoblastic
leukemia patients treated on DCOG or COALL
protocols. Leukemia. 2010;24(12):2014-2022.

4. Wong GW, Knowles GC, Mak TW, Ferrando AA,
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