26 research outputs found

    Interventi tecnologici per la valorizzazione delle olive da tavola della varietĂ  "Manna"

    Get PDF
    Sardinia table olives are chiefly obtained with the natural style, by processing green fruits. Due to lack of scientific data products are of low quality. The present study was aimed to verify the effectiveness of some technological steps, such as brine acidification and sugar or microbial starter adjunct on main chemical-physical parameters of "Manna". Results clearly show beneficial effects of starter inoculation and acidification and on the sensorial and safety standpoint. La produzione di olive da mensa in Sardegna è condotta quasi esclusivamente con il metodo al naturale su olive verdi. Tale tecnologia, vista anche la mancanza di documentazione scientifica al riguardo, porta spesso all'ottenimento di un prodotto scadente. Con il presente lavoro si è verificata l'efficacia di alcuni interventi tecnologici, quali l'acidificazione della salamoia e l'aggiunta di substrato fermentescibile o di starter microbici, sui principali parametri chimico-fisici delle olive della varietà "Manna". I risultati ottenuti evidenziano gli effetti positivi, dal punto di vista sensoriale e igienico-sanitario, dello starter e dell'acidificazione

    Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress

    Get PDF
    TreesInternational audienceCitrus plants originate from southeastern Asia, in a large area with various climates characterized by a broad range of temperatures. Some species have been diversified in temperate climates, others in subtropical climates. Temperature is assumed to be a key factor in citrus species adaptation and diversification of basic cellular functions. In a field experiment, the tolerance of the three fundamental Citrus species C. medica L., C. reticulata Blanco and C. maxima (Burm.) Merr., and Fortunella japonica (Thunb.) Swing. to photooxidative stress caused by seasonal climatic changes was evaluated on adult trees by measuring net photosynthesis (Pnet), stomatal conductance (Gs), maximum photosynthesis (Pmax) and chlorophyll fluorescence (Fv/Fm). In addition, seasonal changes in oxidative status, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) and antioxidant metabolites (ascorbate and glutathione) were monitored. Mandarin and pummelo appeared to be the most tolerant, showing the lowest down-regulation of photosynthetic parameters, and the lowest accumulation of oxidized compounds associated with efficiency of their antioxidant system. Kumquat showed intermediate behaviour, with a large diminution of photosynthetic parameters and marked accumulation of hydrogen peroxide, whereas the malondialdehyde content remained low, with a strong induction of glutathione synthesis. Finally, citron appeared to be the most sensitive genotype with a marked decrease in photosynthetic performance, the largest accumulation of oxidative parameters, insufficient induction of antioxidant enzymes and down-regulation of ascorbate and glutathione synthesis

    Physiological and biochemical response to photooxidative stress of the fundamental citrus species

    Get PDF
    International audienceDespite the economic importance of citrus, insights on the genetic response to stress are scarce. The aim of the present study was to compare fundamental citrus species for their response to photooxidative stress. The experiment was conducted under orchard conditions on three fundamental citrus species C. medica L., C. reticulata Blanco and C. maxima (Burm.) Merr., and on Fortunella japonica (Thunb.) Swing. We examined their respective net photosynthesis (Pnet), stomatal conductance (Gs) and chlorophyll fluorescence (Fv/Fm) on sun-acclimated leaves and shade-acclimated leaves returned under natural sunlight irradiance. To compare the respective response mechanism, we analyzed changes in oxidative status (hydrogen peroxide (H2O2) and malondialdehyde (MDA)), reactive oxygen species (ROS)-scavenging enzymes (superoxide dismutase (SOD), catalase, ascorbate peroxidase), recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) and antioxidant metabolites (ascorbate and glutathione). Kumquat and pummelo exposed lower down-regulation and full recovery of photosynthetic parameters, lower accumulation of oxidized compounds associated with greater production of reduced glutathione (Gsh) and enhanced activity of the three ROS scavenging enzymes, especially SOD. Citron and mandarin showed a marked decrease and incomplete recovery in photosynthetic performance, mainly in Pnet and Fv/Fm, larger accumulation of oxidative parameters, slighter induction of antioxidant enzymes and down-regulation of reduced ascorbate (Asa) and Gsh synthesis. These results suggest that kumquat and pummelo have a greater tolerance to photooxidative stress than citron and mandarin

    Nutrient Deficiency Tolerance in Citrus Is Dependent on Genotype or Ploidy Level

    Get PDF
    Plants require essential minerals for their growth and development that are mainly acquired from soil by their roots. Nutrient deficiency is an environmental stress that can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations are frequently employed to enhance tolerance to various abiotic stresses. These tolerances can be improved in doubled diploid genotypes. The aim of this work was to compare the impact of nutrient deficiency on the physiological and biochemical response of diploid (2x) and doubled diploid (4x) citrus seedlings: Volkamer lemon, Trifoliate orange Ă— Cleopatra mandarin hybrid, Carrizo citrange, Citrumelo 4475. Flhorag1 (Poncirus trifoliata + and willow leaf mandarin), an allotetraploid somatic hybrid, was also included in this study. Our results showed that depending on the genotype, macronutrient and micronutrient deficiency affected certain physiological traits and oxidative metabolism differently. Tetraploid genotypes, mainly Flhorag1 and Citrumelo 4475, appeared resistant compared to the other genotypes as indicated by the lesser decrease in photosynthetic parameters (Pnet, Fv/Fm, and Gs) and the lower accumulation of oxidative markers (MDA and H2O2) in roots and leaves, especially after long-term nutrient deficiency. Their higher tolerance to nutrient deficiency could be explained by better activation of their antioxidant system. For the other genotypes, tetraploidization did not induce greater tolerance to nutrient deficiency

    Influence of Rootstock Genotype and Ploidy Level on Common Clementine (Citrus clementina Hort. ex Tan) Tolerance to Nutrient Deficiency

    No full text
    International audienceNutrient deficiency, in particular when this involves a major macronutrient (N, P, and K), is a limiting factor on the performance of plants in their natural habitat and agricultural environment. In the citrus industry, one of the eco-friendliest techniques for improving tolerance to biotic and abiotic stress is based on the grafting of a rootstock and a scion of economic interest. Scion tolerance may be improved by a tetraploid rootstock. The purpose of this study was to highlight if tolerance of a common clementine scion (C) ( Citrus clementina Hort. ex Tan) to nutrient deficiency could be improved by several diploid (2Ă—) and their tetraploid (4Ă—) counterparts citrus genotypes commonly used as rootstocks: Trifoliate orange Ă— Cleopatra mandarin (C/PMC2x and C/PMC4x), Carrizo citrange (C/CC2x and C/CC4x), Citrumelo 4475 (C/CM2x and C/CM4x). The allotetraploid FlhorAG1 (C/FL4x) was also included in the experimental design. The impact of nutrient deficiency on these seven scion/rootstock combinations was evaluated at root and leaf levels by investigating anatomical parameters, photosynthetic properties and oxidative and antioxidant metabolism. Nutrient deficiency affects foliar tissues, physiological parameters and oxidative metabolism in leaves and roots in different ways depending on the rootstock genotype and ploidy level. The best known nutrient deficiency-tolerant common clementine scions were grafted with the doubled diploid Citrumelo 4475 (C/CM4x) and the allotetraploid FlhorAG1 (C/FL4x). These combinations were found to have less foliar damage, fewer changes of photosynthetic processes [leaf net photosynthetic rate ( P net ), stomatal conductance ( g s ), transpiration (E), maximum quantum efficiency of PSII ( F v / F m ), electron transport rate (ETR), ETR/ P net ], and effective quantum yield of PSII [ Y (II)], less malondialdehyde accumulation in leaves and better functional enzymatic and non-enzymatic antioxidant systems. Common clementine scions grafted on other 4Ă— rootstocks did not show better tolerance than those grafted on their 2Ă— counterparts. Chromosome doubling of rootstocks did not systematically improve the tolerance of the common clementine scion to nutrient deficiency

    Tetraploid Citrumelo 4475 (Citrus paradisi L. Macf. Ă— Poncirus trifoliata L. Raf.) Rootstocks Improve Common Clementine Tolerance to Long-term Nutrient Deficiency (Citrus clementina Hort. ex Tan)

    No full text
    Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after seven months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype

    Triploidy in Citrus Genotypes Improves Leaf Gas Exchange and Antioxidant Recovery From Water Deficit

    Get PDF
    International audienceThe triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents (“Fortune” mandarin and “Ellendale” tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (Pnet and gs) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system

    Effect of chronic arsenic exposure under environmental conditions on bioaccumulation, oxidative stress, and antioxidant enzymatic defenses in wild trout Salmo trutta (Pisces, Teleostei)

    No full text
    International audienceThe present study evaluates the relation between chronic arsenic (As) exposure in the natural distribution area of wild brown trout (Salmo trutta), oxidative stress and antioxidant enzymatic defenses. Two rivers of the same watershed were evaluated to highlight the correlation between As accumulation and the resulting stress: (i) the Presa River, which has high chronic As levels (2281.66 µg/L) due to past mining activity, and (ii) the Bravona River (control river). This metalloid was measured in main fish tissues (gills, kidney, liver, muscle, gonads and fins) and water. As organotropism in S. trutta was kidney > liver > gill > fin > gonad > muscle. The HepatoSomatic Index (HSI) and somatic condition (CF) were used to compare fish population conditions from both sites. Arsenic can be absorbed by the gills and can induce oxidative stress and disturb antioxidant defenses. The aim of this study was to evaluate oxidative stress response by measuring mal-ondialdehyde (MDA) content, as a marker of lipid perox-idation, and antioxidant enzymatic defenses (Superoxide dismutase (SOD), catalase CAT, glutathione peroxidase (GPx) and glutathione S-transferase (GST)), in the main tissues of control and exposed trout. The highest MDA content was found in the kidney and liver of exposed trout. SOD and CAT activities in exposed livers and kidneys were considerably increased while a significant rise of GPx activity was observed only in the liver. GST activity was found to be significantly induced in the liver of exposed trout. The results demonstrate that arsenic bioaccumulation can induce lipid peroxidation and substantial modifications in antioxidant enzymatic defenses in main wild trout tissues

    Tetraploid Citrumelo 4475 rootstocks improve diploid common clementine tolerance to long-term nutrient deficiency

    No full text
    International audienceAbstract Nutrient deficiency alters growth and the production of high-quality nutritious food. In Citrus crops, rootstock technologies have become a key tool for enhancing tolerance to abiotic stress. The use of doubled diploid rootstocks can improve adaptation to lower nutrient inputs. This study investigated leaf structure and ultrastructure and physiological and biochemical parameters of diploid common clementine scions (C) grafted on diploid (2x) and doubled diploid (4x) Carrizo citrange (C/CC2x and C/CC4x) and Citrumelo 4475 (C/CM2x and C/CM4x) rootstocks under optimal fertigation and after 7 months of nutrient deficiency. Rootstock ploidy level had no impact on structure but induced changes in the number and/or size of cells and some cell components of 2x common clementine leaves under optimal nutrition. Rootstock ploidy level did not modify gas exchanges in Carrizo citrange but induced a reduction in the leaf net photosynthetic rate in Citrumelo 4475. By assessing foliar damage, changes in photosynthetic processes and malondialdehyde accumulation, we found that C/CM4x were less affected by nutrient deficiency than the other scion/rootstock combinations. Their greater tolerance to nutrient deficiency was probably due to the better performance of the enzyme-based antioxidant system. Nutrient deficiency had similar impacts on C/CC2x and C/CC4x. Tolerance to nutrient deficiency can therefore be improved by rootstock polyploidy but remains dependent on the rootstock genotype
    corecore