194 research outputs found

    Numerical study of laminar magneto-convection in a differentially heated square duct

    Get PDF
    Magnetohydrodynamic pressure drops are one of the main issues for liquid metal blanket in fusion reactors. Minimize the fluid velocity at few millimeters per second is one strategy that can be employed to address the problem. For such low velocities, buoyant forces can effectively contribute to drive the flow and therefore must be considered in the blanket design. In order to do so, a CFD code able to represent magneto-convective phenomena is required. This work aims to gauge the capability of ANSYS© CFX-15 to solve such cases. The laminar flow in a differentially heated duct was selected as validation benchmark. A horizontal and uniform magnetic field was imposed over a square duct with a linear and constant temperature gradient perpendicular to the field. The fully developed flow was analyzed for Gr = 10^5 and Hartmann number (M) ranging from 10^2 to 10^3. Both insulating and conducting duct walls were considered. Strong dampening of the flow in the center of the duct was observed, whereas high velocity jets appeared close to the walls parallel to the magnetic field. The numerical results were validated against theoretical and numerical results founding an excellent agreement

    A Preliminary Exergy Analysis of the EU DEMO Fusion Reactor

    Get PDF
    Purpose of the present study is the exergy analysis of EU DEMO pulsed fusion power plant considering the Primary Heat Transfer Systems, the Intermediate Heat Transfer System (IHTS) including the Energy Storage System (ESS) as a first option to ensure the continuity of electric power released to the grid. A second option here considered is a methane fired auxiliary boiler replacing the ESS. The Power Conversion System (PCS) performance is evaluated as well in the overall balance. The performance analysis is based on the exergy method to specifically assess the amount of exergy destruction determined by irreversible phenomena along the whole cyclic process. The pulse and dwell phases of the reactor operation are evaluated considering the state of the art of the ESS adopting molten salts alternate heating and storage in a hot tank followed by a cooling and recovery of molten salt in a cold tank to ensure the continuity of power release to the electrical grid. The second option of the plant configuration is evaluated on the basis of an auxiliary boiler replacing the ESS with a 10% of the power produced by the reactor during both pulse and dwell modes

    MHD mixed convection flow in the WCLL: heat transfer analysis and cooling system

    Get PDF
    In the Water-Cooled Lithium Lead (WCLL) blanket, a critical problem faced by the design is to ensure that the breeding zone (BZ) is properly cooled by the refrigeration system to keep the structural materials under the maximum allowed temperature by the design criteria. CFD simulations are performed using ANSYS CFX to assess the cooling system performances accounting for the magnetic field effect in the sub-channel closest to the first wall (FW). Here, intense buoyancy forces (Gr = 10^10) interact with the pressure-driven flow (Re = 10^3) in a MHD mixed convection regime. A constant magnetic field, parallel to the toroidal direction, is assumed with intensity B = 4.4 T. The walls bounding the channel and the water pipes are modeled as perfectly conducting. The magnetic field is found to dampen the velocity fluctuations triggered by the buoyancy forces and the flow is similar to a forced convection regime. The PbLi heat transfer coefficient is reduced to one-third of its ordinary hydrodynamic value and, consequently, hot-spots between the nested pipes and at the FW are observed, where TMax = 1000K. Optimization strategies for the BZ cooling system layout are proposed and implemented in the CFD model, thus fullling the design criterion

    Two models of income measurement within the Italian accounting theory of financial statements:: a research note based on a pragmatic constructivist analysis

    Get PDF
    Financial statements measure and monitor a company’s major life events. For this reason, they have always been a central object of analysis and discussion in the accounting field and, more generally, in business administration. By drawing on foundational theoretical principles, regulations and accounting standards, financial statements record the dynamics of both capital and income over the years to provide a logical synthesis of a company’s economic, financial and asset situation. They constitute a vital document for both internal controls and reporting procedures, thereby supporting corporate decision-making and communication processes directed at the external environment. This role of financial statements as a managerial and informative instrument at both intra-organisational and inter-organisational levels brings with it the need to interpret the meaning of the income and the capital resulting from financial accounts, especially in terms of their capability to truthfully and effectively convey a certain business reality, also in light of the particular historical moment of reference. Different dominant values of different historical eras may influence how financial statements are prepared and formatted. Whether historical cost approaches, fair value approaches or calibrated combinations of the two are taken depends on the circumstances. In this article, we adopt a pragmatic constructivist perspective to interpret the validity of two theoretical models proposed in Italian literature on the theory of financial statements (the so-called Economia Aziendale approach) and to suggest some avenues for future research. Our focus is the underlying logic of the two models. Our goal is not to get into specifics about the accounting technicalities underpinning the functioning and the mechanics of the two models but to reflect on their foundational logic. The research note that this paper proposes might, therefore, constitute a useful, broad enough reference framework to interpret the meaning of different configurations of income and capital, as well as their evolution over time, which result from the practical application (through regulations and accounting standards) of the basic logics of financial statements preparation that this paper analyses

    Sizing of the Vacuum Vessel Pressure Suppression System of a Fusion Reactor Based on a Water-Cooled Blanket, for the Purpose of the Preconceptual Design

    Get PDF
    A methodology to preliminarily evaluate the size of the suppression tank and the relief pipes for a Vacuum Vessel Pressure Suppression System, to be adopted in a fusion reactor based on a water cooled blanket, is presented. The volume of the ST depends on the total energy of the water cooling system and it can be sized based on a required final pressure at equilibrium, by a simple energy balance. The pressure peak in the VV depends mainly on break area and the flow area of the relief pipes and some suggestions about the method for a preliminarily evaluation of their size are discussed. The computer code CONSEN has been used to perform a parametric study and to verify the methodology

    Numerical analysis of temperature stratification in the CIRCE pool facility

    Get PDF
    In the framework of Heavy Liquid Metal (HLM) GEN IV Nuclear reactor development, the focus is in the combination of security and performance. Numerical simulations with Computational Fluid Dynamics (CFD) or system codes are useful tools to predict the main steady-state phenomena and how transitional accidents could unfold in GEN IV reactors. In this paper, to support the validation of CFD as a valid tool for the design, the capability of ANSYS CFX v15.0 to simulate and reproduce mixed natural convection and thermal stratification phenomena inside a pool is investigated. The 3D numerical model is based on the CIRCE facility, located in C.R. ENEA Brasimone. It is a pool facility, structured with all the components necessary to simulate the behavior of an HLM reactor, where LBE flows into the primary circuit. For the analysis, the LBE physical properties are implemented in CFX by using recent NEA equations [2]. Previously published RELAP5-3D© results [1] are employed to derive accurate boundary conditions for the simulation of the steady-state conditions in the pool and for CFX validation. The analysis focuses on the pool natural circulation with the presence of thermal structures in contact with LBE, considered as constant temperature sources. The development of thermal stratification in the pool is observed and evaluated with a mesh sensitivity analysis

    Rainfall Map from Attenuation Data Fusion of Satellite Broadcast and Commercial Microwave Links

    Get PDF
    The demand for accurate rainfall rate maps is growing ever more. This paper proposes a novel algorithm to estimate the rainfall rate map from the attenuation measurements coming from both broadcast satellite links (BSLs) and commercial microwave links (CMLs). The approach we pursue is based on an iterative procedure which extends the well-known GMZ algorithm to fuse the attenuation data coming from different links in a three-dimensional scenario, while also accounting for the virga phenomenon as a rain vertical attenuation model. We experimentally prove the convergence of the procedures, showing how the estimation error decreases for every iteration. The numerical results show that adding the BSL links to a pre-existent CML network boosts the accuracy performance of the estimated rainfall map, improving up to 50% the correlation metrics. Moreover, our algorithm is shown to be robust to errors concerning the virga parametrization, proving the possibility of obtaining good estimation performance without the need for precise and real-time estimation of the virga parameters

    GEN-IV LFR development: Status & perspectives

    Get PDF
    Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of Generation IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to Heavy Liquid Metal (HLM) nuclear reactors. In this frame, ENEA developed one of the larger European experimental fleet of experimental facilities aiming at investigating HLM thermal-hydraulics, coolant chemistry control, corrosion behavior for structural materials, and at developing components, instrumentations and innovative systems, supported by experiments and numerical tools. The present work aims at highlighting the capabilities and competencies developed by ENEA so far in the frame of the liquid metal technologies for GEN-IV LFR. In particular, an overview on the ongoing R&D experimental program will be depicted considering the actual fleet of facilities: CIRCE, NACIE-UP, LIFUS5, LECOR and HELENA. CIRCE (CIRColazione Eutettico) is the largest HLM pool facility presently in operation worldwide. Full scale component tests, thermal stratification studies, operational and accidental transients and integral tests for the nuclear safety and SGTR (Steam Generator Tube Rupture) events in a large pool system can be studied. NACIE-UP (NAtural CIrculation Experiment-UPgraded) is a loop with a HLM primary and pressurized water secondary side and a 250 kW power Fuel Pin Simulator working in natural and mixed convection. LIFUS5 (lithium for fusion) is a separated effect facility devoted to the HLM/Water interaction. HELENA (HEavy Liquid metal Experimental loop for advanced Nuclear applications) is a pure lead loop with a mechanical pump for high flow rates experiments. LECOR (LEad CORrosion) is a corrosion loop facility with oxygen control system installed. All the experiment actually ongoing on these facilities are described in the paper, depicting their role in the context of GEN-IV LFR development

    Software-Defined Radio Technologies forGNSS Receivers: A Tutorial Approach to a SimpleDesign and Implementation

    Get PDF
    The field of satellite navigation has witnessed the advent of a number of new systems and technologies: after the landmark design and development of the Global Positioning System (GPS), a number of new independent Global Navigation Satellite Systems (GNSSs) were or are being developed all over the world: Russia's GLONASS, Europe's GALILEO, and China's BEIDOU-2, to mention a few. In this ever-changing context, the availability of reliable and flexible receivers is becoming a priority for a host of applications, including research, commercial, civil, and military. Flexible means here both easily upgradeable for future needs and/or on-the-fly reprogrammable to adapt to different signal formats. An effective approach to meet these design goals is the software-defined radio (SDR) paradigm. In the last few years, the availability of new processors with high computational power enabled the development of (fully) software receivers whose performance is comparable to or better than that of conventional hardware devices, while providing all the advantages of a flexible and fully configurable architecture. The aim of this tutorial paper is surveying the issue of the general architecture and design rules of a GNSS software receiver, through a comprehensive discussion of some techniques and algorithms, typically applied in simple PC-based receiver implementations

    Transient analysis of SIRIO using RELAP5/MOD3.3 system code

    Get PDF
    The main outcome of the present paper is the feasibility analysis of SIRIO (Sistema di rimozione della Potenza di decadimento per Reattori InnOvativi) facility with conditions based on those of its reference facility. The aim of SIRIO project is to study an innovative Decay Heat Removal System (DHRS) for liquid metal reactor and advanced Light Water Reactor (LWR). Such system must ensure passive control of the power removed from the primary system in abnormal condition, and must ensure reactor cooling in both short and long term. This study present numerical simulations developed with RELAP5/MOD3.3, of two operational procedures: the first one is a steady-state and the second one is a transient phase with decay heat generation. The thermal-hydraulic model, developed with RELAP5/MOD3.3, simulates the whole facility including lines, valves, water and gas tanks, and the Molten Salts (MS) gap. Since there is not experimental data, the present paper is a pre-test study based on SIRO facility design
    • …
    corecore