146 research outputs found

    Silkworm and Silk: Traditional and Innovative Applications

    Get PDF
    The various subjects covered in the present Special Issue "Silkworm and Silk: Traditional and Innovative Applications" demonstrate how sericulture, a practice deeply rooted in human history, can act as a bridge to bring together an exceptionally wide range of scientific and technical expertise in both conventional topics and cutting-edge technologies [...]

    Amyloidogenesis and Responses to Stress

    Get PDF
    Amyloidogenesis is a primitive, physiological response that seems to be an ancient process widely distributed in different cell types of evolutionary distant organisms. The amyloid fibril synthesis is part of a more general inflammatory response to stressful conditions all entailing overproduction of reactive oxygen species (ROS). Interestingly, this event has been integrated into additional physiological functions: (i) the formation of a scaffold promoting the activation and packaging of melanin; (ii) the formation of a scaffold to compartmentalize hormones in the cytoplasm; (iii) the ability to reversibly link different types of molecules to drive close to the nonself; (iv) the construction of a framework to close body lesions. Amyloid fibril formation is a cellular response harmonically integrated with the stress response but for a deregulation in assembling/dismantling, dangerous depots, as in a lot of pathologies, can occur

    Autophagy in development and regeneration: role in tissue remodelling and cell survival

    Get PDF
    Morphogenetic events that occur during development and regeneration are energy demanding processes requiring profound rearrangements in cell architecture, which need to be coordinated in timely fashion with other cellular activities, such as proliferation, migration and differentiation. In the last 15 years, it has become evident that autophagy, an evolutionarily-conserved catabolic process that mediates the lysosomal turnover of organelles and macromolecules, is an essential "tool" to ensure remodelling events that occur at cellular and tissue levels. Indeed, studies in several model organisms have shown that the inactivation of autophagy genes has a significant impact on embryogenesis and tissue regeneration, leading to extensive cell death and persistence of unnecessary cell components. Interestingly, the increased understanding of the mechanisms that confers selectivity to the autophagic process has also contributed to identifying development-specific targets of autophagy across species. Moreover, alternative ways to deliver materials to the lysosome, such as microautophagy, are also emerging as key actors in these contexts, providing a more complete view of how the cell component repertoire is renovated. In this review, we discuss the role of different types of autophagy in development and regeneration of invertebrates and vertebrates, focusing in particular on its contribution in cnidarians, platyhelminthes, nematodes, insects, zebrafish and mammals

    A Bombyx mori Infection Model for Screening Antibiotics against Staphylococcus epidermidis

    Get PDF
    The increasing number of microorganisms that are resistant to antibiotics is prompting the development of new antimicrobial compounds and strategies to fight bacterial infections. The use of insects to screen and test new drugs is increasingly considered a promising tool to accelerate the discovery phase and limit the use of mammalians. In this study, we used for the first time the silkworm, Bombyx mori, as an in vivo infection model to test the efficacy of three glycopeptide antibiotics (GPAs), against the nosocomial pathogen Staphylococcus epidermidis. To reproduce the human physiological temperature, the bacterial infection was performed at 37 °C and it was monitored over time by evaluating the survival rate of the larvae, as well the response of immunological markers (i.e., activity of hemocytes, activation of the prophenoloxidase system, and lysozyme activity). All the three GPAs tested (vancomycin, teicoplanin, and dalbavancin) were effective in curing infected larvae, significantly reducing their mortality and blocking the activation of the immune system. These results corroborate the use of this silkworm infection model for the in vivo studies of antimicrobial molecules active against staphylococci

    High performance liquid chromatography preparation of the molecular species of GM1 and GD1a gangliosides with homogeneous long chain base composition.

    Get PDF
    A semi-preparative, analytical high performance liquid chromatographic (HPLC) procedure is described for the isolation of molecular species of GM1 and GD1a gangliosides containing a single long chain base, C18 or C20 sphingosine, C18 or C20 sphinganine, each in its natural erythro or unnatural threo form. The threo forms were obtained from 2,3-dichloro-5,6-dicyanobenzoquinone/NaBH4 -treated gangliosides. The ganglioside molecular species separated by HPLC were analyzed for carbohydrate, fatty acid, and long chain base composition. In particular, long chain bases were submitted to gas-liquid chromatographic-mass spectrometric analyses as their trimethylsilyl (TMS) or N-acetyl-TMS derivatives, and chain length, presence or absence of C4-C5 double bond, and C-3 steric configuration were ascertained. The final preparations of individual molecular species of GM1 and GD1a gangliosides were more than 99% homogeneous in their saccharide moiety, contained a single long chain base (homogeneity higher than 99%), and had a fatty acid composition primarily of stearic acid (92 to 97%). All the individual molecular species of GM1 and GD1a gangliosides were also prepared in radioactive form by selective tritiation at C-3 of the long chain base. Their specific radioactivity ranged from 1.3 to 1.45 Ci/mmol. The availability of these molecular species of gangliosides is expected to facilitate studies aimed at ascertaining the role played by the hydrophobic portion in the functional behavior of gangliosides

    In Vivo Isolation and Characterization of Stem Cells with Diverse Phenotypes Using Growth Factor Impregnated Biomatrices

    Get PDF
    BACKGROUND: The stimulation to differentiate into specific cell types for somatic stem cells is largely due to a series of internal and external signals coming from the microenvironment that surrounds the stem cell. Even though intensive research has been made, the basic mechanisms of plasticity and/or the molecules regulating stem cells proliferation and differentiation are not completely determined. Potential answers concerning the problems could be derived from the studies of stem cells in culture. METHODOLOGY/PRINCIPLE FINDINGS: We combine a new procedure (using the matrigel biopolymer supplemented with a selected cytokine/growth factor) with classic techniques such as light, confocal and electron microscopy, immunohistochemistry and cell culture, to perform an analysis on stem cells involved in the leech (Hirudo medicinalis) repair tissues. The leech has a relative anatomical simplicity and is a reliable model for studying a variety of basic events, such as tissue repair, which has a striking similarity with vertebrate responses. Our data demonstrate that the injection of an appropriate combination of the matrigel biopolymer supplemented with a selected cytokine/growth factor in the leech Hirudo medicinalis is a remarkably effective tool for isolating a specific cell population in vivo. A comparative analysis of biopolymer in vivo sorted stem cells indicates that VEGF recruited cells of a hematopoietic/endothelial phenotype whereas MCP-1/CCL2 isolated cells that were of an early myeloid lineage. CONCLUSION: Our paper describes, for the first time, a method allowing not only the isolation of a specific cell population in relation to the cytokine utilized but also the possibility to culture a precise cell type whose isolation is otherwise quite difficult. This approach could be broadly applied to isolate stem cells of diverse origins based on the recruitment stimuli employed

    Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences

    Get PDF
    Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees

    Mechanical Processing of Hermetia illucens Larvae and Bombyx mori Pupae Produces Oils with Antimicrobial Activity

    Get PDF
    The aim of this work was to develop processing methods that safeguard the quality and antimicrobial properties of H. illucens and B. mori oils. We adopted a vegetable diet for both insects: leftover vegetables and fruit for H. illucens and mulberry leaves for B. mori. First, alternative techniques to obtain a good oil extraction yield from the dried biomass of H. illucens larvae were tested. Traditional pressing resulted to be the best system to maximize the oil yield and it was successfully applied to B. mori pupae. Oil quality resulted comparable to that obtained with other extraction methods described in the literature. In the case of B. mori pupae, different treatments and preservation periods were investigated to evaluate their influence on the oil composition and quality. Interestingly, agar diffusion assays demonstrated the sensitivity of Gram-positive Bacillus subtilis and Staphylococcus aureus to H. illucens and B. mori derived oils, whereas the growth of Gram-negative Pseudomonas aeruginosa and Escherichia coli was not affected. This study confirms that fat and other active compounds of the oil extracted by hot pressing could represent effective antimicrobials against bacteria, a relevant result if we consider that they are by-products of the protein extraction process in the feed industry

    A soil fungus confers plant resistance against a phytophagous insect by disrupting the symbiotic role of its gut microbiota

    Get PDF
    Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems
    • …
    corecore